首页> 外文会议>AIAA/ASME/SAE/ASEE joint propulsion conference;AIAA propulsion and energy forum >Isotopic Inventories in Thermal Neutron Spectrum Reactor Designs Suitable for Direct Nuclear Thermal Propulsion
【24h】

Isotopic Inventories in Thermal Neutron Spectrum Reactor Designs Suitable for Direct Nuclear Thermal Propulsion

机译:适用于直接核热推进的热中子谱反应堆设计中的同位素清单

获取原文

摘要

Advancement of U.S. scientific, security, and economic interests through a robust space exploration program requires high performance propulsion systems to support a variety of robotic and crewed missions beyond low Earth orbit. Past studies, in particular those in support of the Space Exploration Initiative (SEI), have shown nuclear thermal propulsion systems provide superior performance for high mass high propulsive delta-Ⅴ missions. The recent NASA Design Reference Architecture (DRA) 5.0 Study re-examined mission, payload, and transportation system requirements for a human Mars landing mission in the post-2030 timeframe. Nuclear thermal propulsion was again identified as the preferred in-space transportation system. An extensive nuclear thermal rocket technology development effort was conducted from 1955-1973 under the Rover/NERVA Program. Both graphite and refractory metal alloy fuel types were pursued. Recent activities have included parallel evaluation and design efforts of engine concepts based on both fuel types. Isotopic inventory changes in a propulsion reactor can influence multiple aspects of engine operation. Two primary areas of concern are changes in engine reactivity and in the radiation environments external to the engine. The magnitudes of the impacts vary depending on the reactor type (fast neutron spectrum or thermal/epithermal neutron spectrum), engine operating times, cooling times since last engine operation, and engine design and operating mode. Engines can provide direct nuclear thermal propulsion only or provide some combination of direct propulsion and electrical power generation. Operating times are usually short for engines employed solely for direct nuclear thermal propulsion. Reactivity losses are usually low and are due to a combination of fissile depletion and fission product absorption. These small reactivity losses due to depletion can be accommodated by control drum rotation, but drum rotation also results in core power distribution changes that can lower engine performance. Engines providing electrical power generation will operate for longer periods and reactivity losses due to fissile depletion and fission product absorption will be higher. Engine systems employing fast spectrum reactors show lower sensitivity to fission product buildup than those employing thermal neutron spectrum reactors. Regardless of engine type or operating mode, fission product and heavy metal isotopes are the primary neutron and gamma sources and establish the radiation environment and biological dose rates near the engine. This paper addresses isotopic changes in a representative thermal neutron spectrum engine. Fission product and heavy metal isotopes important to neutron absorption are identified and ranked at selected times during engine operation. Fission product and heavy metal isotopes important to dose contributions around the engine are identified and ranked at selected times during and after operation.
机译:通过强大的太空探索计划来提高美国的科学,安全和经济利益,需要高性能的推进系统来支持低地球轨道以外的各种机器人和载人飞行任务。过去的研究,特别是那些支持太空探索倡议(SEI)的研究,已经表明,核热推进系统为高质量高推进性δ-Ⅴ任务提供了卓越的性能。最近的NASA设计参考架构(DRA)5.0研究重新审查了2030年后时间范围内人类火星登陆任务的任务,有效载荷和运输系统要求。核热推进再次被确定为首选的空间运输系统。 1955年至1973年,在Rover / NERVA计划下进行了广泛的核热火箭技术开发工作。追求石墨和难熔金属合金燃料类型。最近的活动包括基于两种燃料类型的发动机概念的并行评估和设计工作。推进反应堆中同位素的库存变化会影响发动机运行的多个方面。关注的两个主要领域是发动机反应性和发动机外部辐射环境的变化。冲击的大小取决于反应堆类型(快速中子谱或热/表热中子谱),发动机运行时间,自上次发动机运行以来的冷却时间以及发动机设计和运行模式。发动机只能提供直接核热推进,也可以提供直接推进和发电的某种组合。对于仅用于直接核热推进的发动机,运转时间通常较短。反应性损失通常较低,这是由于裂变耗竭和裂变产物吸收共同造成的。这些由于耗尽而引起的小的反应性损失可以通过控制鼓的旋转来弥补,但是鼓的旋转也会导致核心功率分配的变化,从而降低发动机的性能。提供发电的发动机将运行更长的时间,并且由于裂变耗尽和裂变产物吸收而导致的反应性损失将会更高。与使用热中子光谱反应堆的发动机系统相比,使用快速光谱反应堆的发动机系统对裂变产物积聚的敏感性较低。无论发动机类型或工作模式如何,裂变产物和重金属同位素都是主要的中子和伽马源,它们在发动机附近建立了辐射环境和生物剂量率。本文探讨了代表性热中子谱引擎中的同位素变化。识别裂变产物和对中子吸收很重要的重金属同位素,并在发动机运行期间的选定时间对其进行排名。识别裂变产物和重金属同位素对发动机周围的剂量贡献很重要,并在操作期间和之后的选定时间对其进行排名。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号