首页> 外文会议>Annual meeting of the Institute of Nuclear Materials Management >DELAYED GAMMA-RAY SPECTROSCOPY WITH LANTHANUM BROMIDE DETECTOR FOR NON-DESCTRUCTIVE ASSAY OF NUCLEAR MATERIAL
【24h】

DELAYED GAMMA-RAY SPECTROSCOPY WITH LANTHANUM BROMIDE DETECTOR FOR NON-DESCTRUCTIVE ASSAY OF NUCLEAR MATERIAL

机译:溴化镧检测器的延迟伽马射线光谱法对核材料的无损检测

获取原文

摘要

High-energy delayed gamma-ray (DG) spectroscopy is a potential technique for directly assaying spent fuel assemblies and achieving the safeguards goal of quantifying nuclear material inventories for spent fuel handling, interim storage, reprocessing facilities, repository sites, and final disposal. Requirements for the gamma-ray detection system, in the energy range up to ~7 MeV, can be summarized as follows: high efficiency at high gamma-ray energies, high energy resolution, good linearity between gamma-ray energy and output signal amplitude, ability to operate at very high count-rates, and ease of use in industrial environments such as nuclear facilities. High Purity Germanium Detectors (HPGe) are the state of the art and provide excellent energy resolution but are limited in their count rate capability. Note that fully-burned spent-fuel assemblies produce over 10~(15) gamma-rays/s, thus making high count-rate capability being an important driving criterion among the requirements. Lanthanum Bromide (LaBr_3) scintillation detectors offer significantly higher count-rate capability than HPGe detectors, although at lower energy resolution, and they do not need a cooling system. Thus LaBr_3 detectors may be an effective alternative for nuclear spent-fuel applications. The performance of a 2" (length) × 2" (diameter) of LaBr_3 scintillation detector system was evaluated. Spectroscopy characteristics of the detector system were measured up to count rates of ~3 Mcps. Further, experimental measurements were conducted at the Idaho Accelerator Center, Idaho State University, where ~3g of ~(235)U and ~3g of ~(239)Pu samples were irradiated with neutrons from a photon-neutron source and DG spectra collected. Potential capabilities and limitations of LaBr_3 scintillation detectors for high count rate DG spectroscopy for assaying nuclear material were investigated.
机译:高能延迟伽马射线(DG)光谱技术是一种直接分析乏燃料组件并实现量化核材料清单的保障性目标的潜在技术,以用于乏燃料处理,临时存储,后处理设施,储存场所和最终处置。能量范围高达〜7 MeV的伽马射线探测系统的要求可总结如下:高伽马射线能量下的高效率,高能量分辨率,伽马射线能量与输出信号幅度之间的良好线性,以很高的计数率运行的能力,以及在工业环境(如核设施)中的易用性。高纯锗探测器(HPGe)是最新技术,具有出色的能量分辨率,但计数率能力受到限制。请注意,完全燃烧的乏燃料组件产生超过10〜(15)伽马射线/秒的速度,因此使高计数能力成为要求中的重要驱动标准。溴化镧(LaBr_3)闪烁探测器提供的计数率能力比HPGe探测器高得多,尽管能量分辨率较低,并且它们不需要冷却系统。因此,LaBr_3检测器可能是核乏燃料应用的有效替代品。评估了2“(长)×2”(直径)的LaBr_3闪烁检测器系统的性能。对检测器系统的光谱特性进行了测量,直至计数率达到〜3 Mcps。此外,在爱达荷州立大学爱达荷州加速器中心进行了实验测量,用来自光子中子源的中子辐照了〜3g〜(235)U和〜3g〜(239)Pu样品,并收集了DG光谱。研究了LaBr_3闪烁探测器在高计数率DG光谱分析核材料中的潜在能力和局限性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号