首页> 外文会议>AIAA applied aerodynamics conference;AIAA aviation forum >Parametric Trade Study for Supersonic Bi-Directional Flying Wing
【24h】

Parametric Trade Study for Supersonic Bi-Directional Flying Wing

机译:超音速双向飞行机翼的参数贸易研究

获取原文

摘要

This paper conducts a parametric trade study to establish and understand the relationship between the sonic boom/aerodynamic efficiency and the design parameters for supersonic bi-directional flying wing(SBiDir-FW). The mission requirements for this supersonic plane include the cruise Mach number of 1.6, range of 4000 nm, payload of 100 passenger and flight altitude of 50k ft. An advanced geometry model is employed to construct the SBiDir-FW configurations. The geometry model can freely vary airfoil meanline angle distribution to control the expansion and shock waves on the airplane surface in order to mitigate sonic boom and improve aerodynamic efficiency. The trade study has several very important findings: 1) The far field ground sonic boom signature is directly related to the smoothness of the wave distribution on the airplane surface. The meanline angle distribution is a very effective control methodology to mitigate surface shock and expansion wave strength, and mitigate compression wave coalescing by achieving smooth loading distribution chord-wise. Compared with a linear meanline angle distribution, a design using non-monotonic meanline angle distribution with reversed cambering in the mid-chord region is able to reduce the sonic boom ground loudness by over 20PLdB. 2) Decreasing sweep angle within the Mach cone will increase L/D as well as sonic boom. A design with variable sweep from 84° at the very leading edge to 68° at the tip achieves a very high L/D of 10.4 at Mach number 1.6 due to the low wave drag. If no sonic boom constraint is considered, the L/D can be further Increased. 3) The round leading edge and trailing edge under high sweep angle are beneficial to improve aerodynamic performance, sonic boom, and to increase volume of the airplane. The qualitative and quantitative findings in this paper give better understanding of physics and provide the path to achieve the ultimate high performance design. The final design with refined mesh achieves sonic boom ground loudness of 72PldB and aerodynamic dynamic efficiency L/D of 8.3. If increasing the cruise altitude from 50kft to 56kft, the ground sonic boom loudness will be decreased to 68PLdB and 65PLdB respectively. All the design in this study are created manually. It is believed that a systematic automated design optimization will significantly improve the design.
机译:本文进行了参数贸易研究,以建立和理解声波吊杆/空气动力效率与超音速双向飞行翼(SBiDir-FW)的设计参数之间的关系。该超音速飞机的任务要求包括1.6马赫的巡航速度,4000 nm的航程,100名乘客的有效载荷和50k ft的飞行高度。采用先进的几何模型来构造SBiDir-FW配置。几何模型可以自由改变翼型中线角度分布,以控制飞机表面的膨胀波和冲击波,从而减轻音爆并提高空气动力学效率。该行业研究有几个非常重要的发现:1)远场地面声波喷杆信号与飞机表面波分布的平滑度直接相关。平均线角度分布是一种非常有效的控制方法,可通过实现弦向平滑的载荷分布来减轻表面冲击和扩展波强度,并减轻压缩波合并。与线性中线角度分布相比,在中弦区域中使用非单调中线角度分布并具有反弯度的设计能够将音杆的地面响度降低20PLdB以上。 2)减小马赫锥内的后掠角将增加L / D和声波。从低波阻力开始,从前缘的84°到尖端的68°可变扫掠的设计在1.6马赫数时实现了10.4的非常高的L / D。如果不考虑音爆的限制,则可以进一步提高L / D。 3)大后掠角下的圆形前缘和后缘有利于改善空气动力性能,音爆和增加飞机的体积。本文中的定性和定量发现可以更好地理解物理学,并提供实现最终高性能设计的途径。最终设计采用精巧的网孔,可达到72PldB的声波动臂地面响度和8.3的空气动力学动态效率L / D。如果将巡航高度从50kft增加到56kft,则地面声波臂响度将分别降低到68PLdB和65PLdB。本研究中的所有设计都是手动创建的。可以相信,系统的自动化设计优化将显着改善设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号