首页> 外文会议>Conference on remote sensing for agriculture, ecosystems, and hydrology >Surface soil water content estimation based on Thermal Inertia and Bayesian smoothing
【24h】

Surface soil water content estimation based on Thermal Inertia and Bayesian smoothing

机译:基于热惯性和贝叶斯平滑的地表土壤含水量估算

获取原文

摘要

Soil water content plays a critical role in agro-hydrology since it regulates the rainfall partition between surface runoff and infiltration and the energy partition between sensible and latent heat fluxes. Current thermal inertia models characterize the spatial and temporal variability of water content by assuming a sinusoidal behavior of the land surface temperature between subsequent acquisitions. Such behavior implicitly supposes clear sky during the whole interval between the thermal acquisitions; but, since this assumption is not necessarily verified even if sky is clear at the exact epoch of acquisition, , the accuracy of the model may be questioned due to spatial and temporal variability of cloud coverage. During the irrigation season, cloud coverage exhibits a quite regular daily behavior, which, when rendered in probabilistic terms, allows for an a-priory evaluation of the most likely suitable pair of images to estimate thermal inertia, given the results of the satellite passes. In turn, the water content of soil is estimated through thermal inertia by coupling diurnal optical and nighttime thermal images, e.g. as acquired by MODIS sensor on board polar orbiting satellites AQUA and TERRA, which have spatial resolution high enough to cope with typical agricultural applications. The method relies on the availability of the shortwave albedo and, at least, two daily thermographs preferably acquired in specific epochs of the day: the first at sunset when latent and heat fluxes are negligible; the second just before sunrise, when surface soil temperature reaches its minimum. Unfortunately, high resolution thermal images are often not available in those specific epochs, so that the accuracy of estimate accuracy decays even severely. In this perspective the paper, following previous contributions by some of the authors of the present paper, proposes exploiting SEVIRI data, characterized by higher acquisition rate but coarser spatial resolution as available from geostationary platform, to supplement MODIS data in a twofold way: i) by allowing to verify, by means of cloud detection algorithms, the hypothesis of clear sky throughout the time; ii) by synthesizing a high spatial/high temporal resolution sequence of images, through fusion of MODIS and SEVIRI data via Bayesian smoothing. A first validation of the latter method is achieved by comparing the results with in situ micro-meteorological measurements.
机译:土壤水分在农业水文学中起着至关重要的作用,因为它调节了地表径流和入渗之间的降雨分配以及显热通量和潜热通量之间的能量分配。当前的热惯性模型通过假设后续采集之间陆地表面温度的正弦行为来表征含水量的时空变化。这种行为暗含了在热采集之间的整个时间间隔中晴朗的天空。但是,由于即使在确切的采集时期天空晴朗时也不一定要验证此假设,因此,由于云覆盖的时空变化,可能会质疑该模型的准确性。在灌溉季节,云层覆盖表现出非常规律的日常行为,以概率的方式呈现时,考虑到卫星通过的结果,可以对最可能的一对合适的图像进行先验评估,以估计热惯性。继而,通过耦合每日的光学和夜间热图像,例如热成像,通过热惯性估算土壤的水分含量。是由极地轨道卫星AQUA和TERRA上的MODIS传感器获取的,其空间分辨率足够高,足以应付典型的农业应用。该方法依赖于短波反照率的可用性,以及至少两个最好在一天中的特定时期获取的每日温度记录图:第一个在日落时潜能和热通量可忽略不计;第二个在晚上。日出前第二秒,当表层土壤温度达到最低温度时。不幸的是,在这些特定时期通常无法获得高分辨率的热图像,因此估计精度的准确性甚至会严重下降。在这种观点下,本文是根据本文一些作者先前的贡献提出的,建议利用SEVIRI数据以双重方式补充MODIS数据,SEVIRI数据具有较高的采集速率但较粗的空间分辨率(可从对地静止平台获得),以补充MODIS数据:通过允许使用云检测算法来验证整个时间晴空的假设; ii)通过贝叶斯平滑融合MODIS和SEVIRI数据,合成图像的高空间/高时间分辨率序列。通过将结果与原位微气象测量值进行比较,可以对后一种方法进行首次验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号