首页> 外文会议>Nonimaging Optics conference >Solar optical codes evaluation for modeling and analyzing complex solar receiver geometries
【24h】

Solar optical codes evaluation for modeling and analyzing complex solar receiver geometries

机译:太阳能光代码评估,用于建模和分析复杂的太阳能接收器几何形状

获取原文

摘要

Solar optical modeling tools are valuable for modeling and predicting the performance of solar technology systems. Four optical modeling tools were evaluated using the National Solar Thermal Test Facility heliostat field combined with flat plate receiver geometry as a benchmark. The four optical modeling tools evaluated were DELSOL, HELIOS, SolTrace, and Tonatiuh. All are available for free from their respective developers. DELSOL and HELIOS both use a convolution of the sunshape and optical errors for rapid calculation of the incident irradiance profiles on the receiver surfaces. SolTrace and Tonatiuh use ray-tracing methods to intersect the reflected solar rays with the receiver surfaces and construct irradiance profiles. We found the ray-tracing tools, although slower in computation speed, to be more flexible for modeling complex receiver geometries, whereas DELSOL and HELIOS were limited to standard receiver geometries such as flat plate, cylinder, and cavity receivers. We also list the strengths and deficiencies of the tools to show tool preference depending on the modeling and design needs. We provide an example of using SolTrace for modeling non-conventional receiver geometries. The goal is to transfer the irradiance profiles on the receiver surfaces calculated in an optical code to a computational fluid dynamics code such as ANSYS Fluent. This approach eliminates the need for using discrete ordinance or discrete radiation transfer models, which are computationally intensive, within the CFD code. The irradiance profiles on the receiver surfaces then allows for thermal and fluid analysis on the receiver.
机译:太阳能光学建模工具对于建模和预测太阳能技术系统的性能非常有用。使用National Solar Thermal Test Facility定日镜场和平板接收器的几何形状作为基准,对四种光学建模工具进行了评估。评估的四个光学建模工具是DELSOL,HELIOS,SolTrace和Tonatiuh。所有这些都可以从各自的开发者处免费获得。 DELSOL和HELIOS都使用太阳形状和光学误差的卷积来快速计算接收器表面上的入射辐照度分布。 SolTrace和Tonatiuh使用射线追踪方法将反射的太阳光线与接收器表面相交并构造辐照度分布图。我们发现,尽管光线追踪工具的计算速度较慢,但​​在建模复杂的接收器几何形状时更加灵活,而DELSOL和HELIOS仅限于标准的接收器几何形状,例如平板,圆柱体和腔体接收器。我们还将列出工具的优缺点,以根据建模和设计需求显示工具的偏好。我们提供了一个使用SolTrace建模非常规接收器几何的示例。目的是将以光学代码计算出的接收器表面上的辐照度轮廓转换为计算流体动力学代码,例如ANSYS Fluent。这种方法消除了在CFD代码中使用计算量大的离散指令或离散辐射传输模型的需要。然后,接收器表面上的辐照度分布图可以在接收器上进行热和流体分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号