首页> 外文会议>American Society for Composites technical conference >Analytical Solution of the Dilute Strain Concentration Tensor for Coated Spherical Inclusions, and Applications for Polymer Nanocomposites
【24h】

Analytical Solution of the Dilute Strain Concentration Tensor for Coated Spherical Inclusions, and Applications for Polymer Nanocomposites

机译:涂层球形夹杂物的稀应变浓度张量的解析解及其在聚合物纳米复合材料中的应用

获取原文

摘要

There is considerable interest in using various nanoparticles to create multifunctional polymer nanocomposite materials with enhanced properties. Due to the large amount of surface area available within the nanocomposite, the effects of non-bulk polymer in the vicinity of the nanoinclusion, with different properties than the bulk polymer, can complicate micromechanical predictions of effective properties. Several micromechanical approaches require one to calculate the dilute strain concentration tensor, for which elegant solutions are available for separate, physically distinct ellipsoidal inclusion geometries using the well-known Eshelby tensor. However, the actual physical geometry of the interphase region is an annular coating layer in which case these elegant solutions are not readily available. In this work, the general coated inclusion problem is formulated for the case of a spherical inclusion,such that the components of the dilute strain concentration tensors for both the inclusion and the interphase/coating region are analytically determined,from which they canthen be directly implemented within standard micromechanical models. Comparison of the results of the proposed model with predictions based on the originalmultiphase Mori-Tanaka approach show that differences between the models are largest when the annular interphase region is softer than the matrix material, attributed to the ability of the proposed model to capture the “stress-shielding effect” in the case of the softer annular interphase. Moreover, the comparison for the soft-interphase case reveals that the overall nanocomposite stiffness calculated by the proposed method is less sensitive to the increasing volume fraction of inclusion than the traditional multiphase Mori-Tanaka model. However, for cases where the interphase material is stiffer than the matrix, the results of the Annular Coated Mori-Tanaka model and the Multiphase Mori-Tanaka model are surprisingly similar. It is anticipated that the proposed model will be particularly useful in evaluating the impact of chemical functionalization techniques and other strategies that seek to tailor the properties of the interphase region in these materials. The extension of this approach for cylindrical coated-inclusion geometry, with application for nanotube and nanorod inclusions, is currently under development.
机译:使用各种纳米颗粒来产生具有增强的性能的多功能聚合物纳米复合材料引起了相当大的兴趣。由于纳米复合材料内有大量的可用表面积,纳米包涵体附近的非本体聚合物的作用与本体聚合物具有不同的性质,可能会使有效性能的微机械预测复杂化。几种微机械方法都需要一种方法来计算稀应变浓度张量,为此,可以使用众所周知的Eshelby张量,针对单独的,物理上不同的椭圆形夹杂物几何形状提供精美的解决方案。然而,相间区域的实际物理几何形状是环形涂层,在这种情况下,这些精美的解决方案不容易获得。在这项工作中,针对球形夹杂物,提出了一般的涂层夹杂物问题,这样就可以分析确定夹杂物和相间/涂层区域的稀应变浓度张量的分量,然后可以直接实现它们。在标准的微机械模型中。所提出的模型的结果与基于原始多相Mori-Tanaka方法的预测结果的比较表明,当环状相间区域比基质材料软时,模型之间的差异最大,这归因于所提出的模型捕获“环形中间相较软的情况下的“应力屏蔽效果”。此外,软相间情况的比较表明,与传统的多相Mori-Tanaka模型相比,所提出的方法计算出的整体纳米复合材料刚度对夹杂物体积分数的增加不敏感。但是,对于相间材料比基质硬的情况,环形涂层森-田中模型和多相森-田中模型的结果令人惊讶地相似。可以预料,所提出的模型在评估化学功能化技术和其他试图在这些材料中调整相间区域特性的策略的影响方面将特别有用。目前正在开发将此方法扩展到圆柱形涂层夹杂物几何形状,并应用于纳米管和纳米棒夹杂物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号