首页> 外文会议>ESAFORM conference on material forming >On the selection of active slip systems in rate independent crystal plasticity
【24h】

On the selection of active slip systems in rate independent crystal plasticity

机译:关于速率无关晶体可塑性的主动滑移系统的选择

获取原文

摘要

Non-uniqueness in the set of active slip systems is a crucial issue in crystal plasticity. To avoid this problem one may perform viscoplastic regularization. This introduces a certain rate dependency, while many crystals are known to behave rate independently. This is sometimes approximated using ver low viscosity parameters in the regularized model, however at the cost of numerical difficulties. Hence, to adequately treat rate independent crystal plasticity an alternative method is needed. The proposed method, Maximum Dissipation Crystal Plasticity (MDCP), achieves uniqueness by selecting the set of active slip systems according to its dissipation. In a finite element calculation, a system of coupled quadratic equations is solved at every integration point to define the material behaviour. This approach is formally equal to the method of incremental energy minimization recently proposed by H. Petryk and M. Kursa (Book of Abstracts of the 8th European Solid Mechanics Conference, Graz, G.A. Holzapfel and R.W. Ogden (eds.)). It can be shown that a viscoplastically regularized model is a limiting case of MDCP, giving similar results when cross hardening becomes negligible. Nevertheless, recent 3D dislocation dynamics calculations by Devincre et al. (Mat. Sci. Eng. A, 400-401 (2005), 182-185) show that cross hardening in face centered cubic crystals is far more important than self hardening. In such cases MDCP gives results distinctly different from its rate dependent counterpart. The proposed method is numerically implemented as user material subroutine into the finite element package ABAQUS within the small as well as large deformation framework, called MDCP and FinDMDCP respectively, such that the simulation of arbitrary load cases is possible.
机译:主动滑移系统中的非唯一性是晶体可塑性的关键问题。为避免此问题,可以执行粘塑性正则化。这引入了一定的速率依赖性,而已知许多晶体独立地表现速率。有时在正则化模型中使用非常低的粘度参数可以对此进行近似估算,但是会以数值上的困难为代价。因此,为了充分处理速率无关的晶体可塑性,需要替代方法。所提出的方法,最大耗散晶体可塑性(MDCP),通过根据其耗散选择一组活动滑移系统来实现唯一性。在有限元计算中,在每个积分点求解一个耦合二次方程组,以定义材料行为。这种方法在形式上等同于H.Petryk和M.Kursa最近提出的增量能量最小化方法(第八届欧洲固体力学会议摘要,格拉茨,G.A。Holzapfel和R.W. Ogden(编))。可以证明,粘塑性正则化模型是MDCP的极限情况,当交叉硬化变得可忽略时,给出相似的结果。尽管如此,最近由Devincre等人进行的3D位错动力学计算。 (Mat.Sci.Eng.A,400-401(2005),182-185)表明,在面心立方晶体中的交叉硬化比自硬化重要得多。在这种情况下,MDCP给出的结果与速率依赖的结果明显不同。所提出的方法作为用户材料子程序,通过数值实现在大小变形框架(分别称为MDCP和FinDMDCP)内的有限元程序包ABAQUS中,从而可以模拟任意载荷工况。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号