首页> 外文会议>World biomaterials congress >Bionic integrated scaffold of tissue engineered cartilage-subchondral bone using 3D printing rapid prototyping technique
【24h】

Bionic integrated scaffold of tissue engineered cartilage-subchondral bone using 3D printing rapid prototyping technique

机译:使用3D打印快速原型技术的组织工程化软骨骨髓内骨的仿生综合支架

获取原文

摘要

Introduction The boundary structure between cartilage and subchondral bone is named calcified cartilage zone, it has important physicochemical functions. However, the tissue-engineered cartilage and bone by current methods usually lacks this boundary structure. Based on the extensive study of human articular osteochondro tissue morphology, here we proposed a concept of integrated scaffold which contains cartilage layer, subchondral bone, and the boundary structure between them. Materials & Methods We measures the parameters needed to fabricate the scaffold, including the thickness of each layer, the cell density in each layer, and the connection mode between each layer. Then we used computer aided design(CAD) software to build the CAD model of the scaffold based on bionics principle. We converted the CAD model into Standard Template Libarary(STL) format, and imported it into 3D printer. The powder spreading device of the printer printed the scaffold layer by layer with the given parameters, finally the 3D scaffold was produced. Results The scaffold produced in our study was similar in morphology with the host tissue, particularly, the boundary structure between cartilage and bone could provide suitable microenvironments for the seed cells to differentiate into either osteoblasts or chondrocytes. The application of 3D printing rapid prototyping technique made the engineered scaffold match the bone defect in anatomical shape, which ensures the accuracy oflocal implantation; moreover, the inner structure of the scaffold resembles that in host tissues, which ensures cell vaccination and nutrient supply. Conclusions 3D printing rapid prototyping technique can be used to fabricat the tissue-engineered bionic scaffold of cartilage and bone, it has many advantages such as simplicity of operation, high accuracy and good repeatability to realize industriliation.
机译:引言软骨和子骨髓内骨之间的边界结构被命名为钙化软骨区,它具有重要的物理化学功能。然而,通过电流方法的组织工程化软骨和骨通常缺乏该边界结构。基于对人关节骨质色组织形态的广泛研究,在这里,我们提出了一种综合脚手架的概念,该概念包含软骨层,子骨髓骨和它们之间的边界结构。材料和方法我们测量制造支架所需的参数,包括每层的厚度,每个层中的电池密度,以及每个层之间的连接模式。然后我们使用计算机辅助设计(CAD)软件基于仿生学原理构建脚手架的CAD模型。我们将CAD模型转换为标准模板价值(STL)格式,并将其导入3D打印机。打印机的粉末扩散装置通过给定的参数通过层印刷支架层,最后产生3D支架。结果我们研究中产生的支架在与宿主组织的形态相似,特别是,软骨和骨之间的边界结构可以为种子细胞提供合适的微环境,以区分成骨细胞或软骨细胞。 3D打印快速原型技术的应用使工程脚手架匹配解剖形状中的骨缺损,确保了植入植入的准确性;此外,支架的内部结构类似于宿主组织,其确保细胞疫苗接种和营养供应。结论3D打印快速原型技术可用于制作软骨和骨骼的组织工程仿生支架,它具有许多优点,如操作简单,精度高,可重复性实现工业。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号