首页> 外文会议>ASME/JSME thermal engineering joint conference;AJTEC2011 >ATOMISTIC SCALE THERMAL TRANSPORT IN AMORPHOUS MATERIALS AND ITS INTERFACES
【24h】

ATOMISTIC SCALE THERMAL TRANSPORT IN AMORPHOUS MATERIALS AND ITS INTERFACES

机译:非晶态材料的原子尺度热传输及其界面

获取原文

摘要

The thermal loads (excess heat) in all DoD systems (aircrafts and spacecrafts) have steadily been increasing at an alarming rate. The current practice is use fuel as the heat sink to dump the excess heat. This operational approach currently is not adequate to sufficiently cool the electronics and thermal devices, and thus limiting the system performance and its system readiness. Amorphous materials system (polymers, adhesive, etc.), which is known to be thermally non-conductive material, is prevalent in almost all DoD systems. So, there is a big incentive in tailoring its thermal transport characteristics to meet the system requirements. Advent of the conductive nano material constituents (such as, carbon nanotubes, graphite platelets, graphene, etc.) and its adaptation in polymers provides us such opportunity. The success of adapting the nano constituents in polymers in providing the conductive pathways through the polymer phase solely lies on the extent how the interface thermal transport characteristics are tailoring between the polymer and nano constituent interfaces. In order to understand the thermal transport phenomena is amorphous materials and to design its interface consistent to the nano constituent morphology scale, computational methodology using atomistic molecular dynamics (MD) is developed. Examples for tailoring thermal interface of nano constituents with polymer will be presented.
机译:所有DoD系统(飞机和航天器)中的热负荷(余热)都以惊人的速度稳定增长。当前的做法是使用燃料作为散热器,以散发多余的热量。当前,这种操作方法不足以充分冷却电子设备和热设备,从而限制了系统性能及其系统就绪性。非晶材料系统(聚合物,粘合剂等),众所周知是导热材料,在几乎所有的DoD系统中都很普遍。因此,有很大的动机来调整其热传输特性以满足系统要求。导电纳米材料成分(例如碳纳米管,石墨片,石墨烯等)的出现及其在聚合物中的适应性为我们提供了这样的机会。使聚合物中的纳米成分适应于提供穿过聚合物相的导电路径的成功仅取决于界面热传输特性如何在聚合物和纳米成分界面之间进行调整的程度。为了了解热传输现象是非晶态材料并设计与纳米成分形态尺度相一致的界面,开发了使用原子分子动力学(MD)的计算方法。将提供用于定制纳米成分与聚合物的热界面的实例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号