首页> 外文会议>Spintronics symposium >New relativistic Hamiltonian: the Angular MagnetoElectric coupling
【24h】

New relativistic Hamiltonian: the Angular MagnetoElectric coupling

机译:新的优势哈密尔顿:角磁电耦合

获取原文

摘要

Spin-Orbit Coupling (SOC) is a ubiquitous phenomenon in the spintronics area, as it plays a major role in allowing or enhancing many well-known phenomena, such as the Dzyaloshinskii-Moriya interaction, magnetocrystalline anisotropy, the Rashba effect, etc. However, the usual expression of the SOC interaction h/4m~2c~2 [E×p]·σ(1) where p is the momentum operator, E the electric field, σ the vector of Pauli matrices, breaks the gauge invariance required by the electronic Hamiltonian. On the other hand, very recently, a new phenomenologi-cal interaction, coupling the angular momentum of light and magnetic moments, has been proposed based on symmetry arguments: -ξ/2[r×(E×B)]·M, (2) with M the magnetization, r the position, and ξ the interaction strength constant. This interaction has been demonstrated to contribute and/or give rise, in a straightforward way, to various magnetoelectric phenomena, such as the anomalous Hall effect (AHE), the anisotropic magnetoresistance (AMR), the planar Hall effect and Rashba-like effects, or the spin-current model in multiferroics. This last model is known to be the origin of the cycloidal spin arrangement in bismuth ferrite for instance. However, the coupling of the angular momentum of light with magnetic moments lacked a fundamental theoretical basis. Starting from the Dirac equation, we derive a relativistic interaction Hamiltonian which linearly couples the angular momentum density of the electromagnetic (EM) field and the electrons spin ?. We name this coupling the Angular MagnetoElectric (AME) coupling. We show that in the limit of uniform magnetic field, the AME coupling yields an interaction exactly of the form of Eq. (2), thereby giving a firm theoretical basis to earlier works. The AME coupling can be expressed as: ξ[E×A]·σ, (3) with A being the vector potential. Interestingly, the AME coupling was shown to be complementary to the traditional SOC, and together they restore the gauge invariance of the Hamiltonian. As an illustration of the AME coupling, we straightforwardly derived a relativistic correction to the so-called Inverse Faraday Effect (IFE), which is the emergence of an effective magnetic field under illumination by a circularly polarized light.
机译:自旋 - 轨道耦合(SOC)是自旋电子学领域普遍存在的现象,因为它起着允许或增强许多知名的现象,如Dzyaloshinskii-Moriya相互作用,磁晶各向异性,所述拉什巴效应等主要作用。然而中,SOC相互作用H /4米〜2C〜2 [E×p]的通常表达·σ(1)其中p是动量算符,E的电场,σ泡利矩阵,断裂所要求的规范不变性的矢量电子哈密顿。 -ξ/ 2 [R×(E×B)]·男,(:在另一方面,最近,一种新的phenomenologi-CAL相互作用,耦合的光线和磁矩的角动量,已基于对称性参数提出2)具有M磁化,r表示的位置,并且ξ相互作用强度恒定。这种相互作用已被证实有助于和/或产生,以简单的方式,对各种磁电现象,诸如反常霍耳效应(AHE),各向异性磁阻(AMR),平面霍尔效应和拉什巴样作用,或multiferroics自旋电流模式。这最后一个模型是已知的,例如铁酸铋摆线旋转排列的起源。然而,随着磁矩的光的角动量的耦合缺乏基本理论基础。从狄拉克方程开始,我们推导出相对论相互作用哈密顿线性地耦合的电磁(EM)场的角动量密度和电子自旋?。我们命名这个耦合角磁(AME)耦合。我们表明,在均匀磁场的极限时,AME耦合产生等式的形式的准确的相互作用。 (2),从而给人一种坚实的理论基础,早期的作品。的AME耦合可表示为:ξ[E×A]·σ,(3)其中A为所述载体的潜力。有趣的是,AME耦合被证明是传统的SOC的互补性,并且它们一起恢复哈密顿的规范不变性。作为AME耦合的图示,我们直接地导出的相对论校正所谓的逆法拉第效应(IFE),这是一种有效的磁场的照明下通过圆偏振光的出现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号