首页> 外文会议>AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition >High Fidelity Simulations of Flapping Wings Designed for Energetically Optimal Flight
【24h】

High Fidelity Simulations of Flapping Wings Designed for Energetically Optimal Flight

机译:专为动力最佳飞行而设计的拍打机翼的高保真模拟

获取原文

摘要

A diversity of efficient solutions for flapping flight have evolved in nature; however, it is often difficult to isolate the key characteristics of efficient flapping flight from biological constraints. Rather than base micro aerial vehicle (MAV) design on natural flyers alone, we propose a multi-fidelity computational approach for analysis and design. At the lowest fidelity level, we use a wake-only energetics model that allows us to rapidly scan the global flapping kinematics for efficient kinematics and configurations. Following the wake-only design space characterization, we determine a series of candidate flapping wing geometries that can produce the desired wake characteristics. To do this, we have developed a quasi-inverse wing design strategy that attempts to match the designed vehicle's wake-circulation distribution with that predicted by the energetics model. Using our modified-doublet lattice method, we are able to determine how to modulate wing twist and camber to produce the desired wake vorticity. Because the method assumes inviscid flow, we are able to derive a large number of candidate designs to produce the target wake; however, as we show in this paper, only some of the designs perform adequately in physically relevant viscous fluids. As such, we use a high order, Discontinuous Galerkin, Navier-Stokes solver to simulate and assess the candidate designs, and examine which geometries minimize flow separation, improve performance and increase efficiency. The focus of this paper is on the design and analysis of efficient flapping wings. We present an application of our framework to a MAV design that has similar characteristics as medium sized fruit bat. We examine candidate wing designs to illustrate how adjusting wing section camber may be more favorable than adjusting wing twist alone. We find that the angle the leading edge of the wing presents to the flow is critical to minimizing flow separation.
机译:自然界已经开发出了多种有效的扑翼解决方案。但是,通常很难将有效扑翼的关键特征与生物学限制区分开来。我们提出了一种用于分析和设计的多保真度计算方法,而不是仅基于自然传单设计微型航空器(MAV)。在最低保真度级别上,我们使用仅唤醒的能量学模型,该模型使我们能够快速扫描全局扑动运动学,以获取有效的运动学和配置。在仅尾流设计空间表征之后,我们确定了一系列可以产生所需尾流特性的候选襟翼几何形状。为此,我们开发了一种拟逆翼设计策略,试图将设计的车辆的尾流循环分布与高能模型预测的相匹配。使用我们的改进双峰晶格方法,我们能够确定如何调节机翼扭曲度和外倾角以产生所需的尾流涡度。因为该方法假设无粘性流,所以我们能够导出大量候选设计以产生目标尾流。但是,正如我们在本文中所显示的,只有某些设计在与物理相关的粘性流体中具有足够的性能。因此,我们使用高阶Discontinuous Galerkin,Navier-Stokes求解器来模拟和评估候选设计,并检查哪些几何形状可最大程度地减少流分离,提高性能并提高效率。本文的重点是高效襟翼的设计和分析。我们介绍了我们的框架在具有与中型果蝠相似特征的MAV设计中的应用。我们研究了候选机翼的设计,以说明调节机翼截面外倾角可能比单独调节机翼扭曲更有利。我们发现机翼前缘与气流之间的夹角对于最小化气流分离至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号