【24h】

Permeability in the Mushy Zone

机译:糊状区的渗透率

获取原文

摘要

When modeled at macroscopic length scales, the complex dendritic network in the solid-plus-liquid region of a solidifying alloy (the "mushy zone") has been modeled as a continuum based on the theory of porous media. The most important property of a porous medium is its permeability, which relates the macroscopic pressure gradient to the throughput of fluid flow. Knowledge of the permeability of the mushy zone as a function of the local volume-fraction of liquid and other morphological parameters is thus essential to successfully modeling the flow of interdendritic liquid during alloy solidification.In current continuum models, the permeability of the mushy zone is given as a deterministic function of (1) the local volume fraction of liquid and (2) a characteristic length scale such as the primary dendrite arm spacing or the reciprocal of the specific surface area of the solid-liquid interface. Here we first provide a broad overview of the experimental data, mesoscale numerical flow simulations, and resulting correlations for the deterministic permeability of both equiaxed and columnar mushy zones.A extended view of permeability in mushy zones which includes the stochastic nature of permeability is discussed. This viewpoint is the result of performing extensive numerical simulations of creeping flow through random microstructures. The permeabilities obtained from these simulations are random functions with spatial autocorrelation structures, and variations in thelocal permeability are shown to have dramatic effects on the flow patterns observed in such microstructures. Specifically, it is found that "lightning-like" patterns emerge in the fluid velocity and that the flows in such geometries are strongly sensitive to small variations in the solid structure. We conclude with a comparison of deterministic and stochastic permeabilities which suggests the importance of incorporating stochastic descriptions of the permeability of the mushy zone in solidification modeling.
机译:当以宏观长度尺度建模时,基于多孔介质理论,已将凝固合金的固液区域(“糊状区”)中的复杂树枝状网络建模为连续体。多孔介质最重要的特性是其渗透性,它使宏观压力梯度与流体流量有关。因此,了解糊状区的渗透性与液体的局部体积分数以及其他形态学参数的关系,对于成功地模拟合金凝固过程中枝晶间液体的流动是必不可少的。 在当前的连续模型中,糊状区的渗透率是由以下因素的确定性函数决定的:(1)液体的局部体积分数和(2)特征长度尺度,例如主要的枝晶臂间距或比表面积的倒数固液界面。在这里,我们首先提供实验数据,中尺度数值流模拟以及等轴和柱状糊状区确定渗透率的相关结果的广泛概述。 讨论了泥泞区渗透率的扩展视图,其中包括渗透率的随机性质。该观点是对通过随机微观结构的蠕变流动进行大量数值模拟的结果。从这些模拟中获得的磁导率是具有空间自相关结构的随机函数,并且 局部渗透率显示出对这种微结构中观察到的流动模式有显着影响。具体地,发现在流体速度中出现“闪电状”图案,并且在这样的几何形状中的流动对固体结构中的小变化非常敏感。我们通过比较确定性渗透率和随机渗透率得出结论,该比较表明在凝固模型中纳入对糊状区渗透率的随机描述的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号