首页> 外文会议>International symposium on flammability and sensitivity of materials in oxygen-enriched atmospheres >An Approach to Understanding Flow Friction Ignition: A Computational Fluid Dynamics (CFD) Study on Temperature Development of High-Pressure Oxygen Flow Inside Micron-Scale Seal Cracks
【24h】

An Approach to Understanding Flow Friction Ignition: A Computational Fluid Dynamics (CFD) Study on Temperature Development of High-Pressure Oxygen Flow Inside Micron-Scale Seal Cracks

机译:一种理解流动摩擦点火的方法:微米级密封裂纹内部高压氧气流的温度发展的计算流体力学(CFD)研究。

获取原文

摘要

Flow friction ignition of non-metallic materials in oxygen is a poorly understood heat-generating mechanism thought to be caused by oxygen flow past a non-metallic sealing surface. Micron-scale fatigue cracks or channels were observed on non-metallic sealing surfaces of oxygen components and could provide a leak path for the high-pressure oxygen to flow across the seal. Literature in the field of micro-fluidics research has noted that viscous dissipation, a heat-generating mechanism, may not be negligible as the flow dimension of the channel is reduced to the micron-scale. Results of a computational fluid dynamics study are presented and used to determine if temperatures developed in high-pressure driven micro-channel oxygen flows are capable of reaching the reported autogenous ignition temperature of non-metallic materials in oxygen.
机译:氧气中非金属材料的流动摩擦着火是一个鲜为人知的发热机理,被认为是由氧气流过非金属密封面引起的。在氧气成分的非金属密封表面上观察到微米级的疲劳裂纹或通道,它们可能为高压氧气流经密封件提供泄漏路径。微流体研究领域的文献已经指出,由于通道的流动尺寸减小到微米级,因此粘性耗散(一种生热机制)可能不可忽略。提出了计算流体动力学研究的结果,并将其用于确定高压驱动的微通道氧气流中产生的温度是否能够达到氧气中非金属材料的自发自燃温度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号