【24h】

THE CUTTING OF WATER SATURATED SAND, THE SOLUTION

机译:水饱和砂的切割,解决方案

获取原文

摘要

When cutting water saturated sand, as is done in dredging, agriculture and soil movement in general, the process is dominated by the phenomenon of dilatancy. Based on pore pressure calculations and the equilibrium of horizontal and vertical forces, equations can be derived to predict the cutting forces. The derivation of this model has been described extensively in previous papers by Miedema et all (1983-2005). In the equations derived, the denominator contains the sine of the sum of the 4 angles involved, the cutting angle α, the shear angle β, the angle of internal friction ψ and the soil interface friction angle δ. So when the sum of these 4 angles approaches 180° the sine will become zero and the cutting forces become infinite. When the sum of these 4 angles is greater then 180° the sine becomes negative and so do the cutting forces. Since this does not occur in reality, nature must have chosen a different mechanism for the case where the sum of these 4 angles approaches 180°. Hettiaratchi and Reece, (1975) found a mechanism which they called boundary wedges for dry soil. At large cutting angles a triangular wedge will exist in front of the blade, not moving relative to the blade. This wedge acts as a blade with a smaller blade angle. In fact, this reduces the sum of the 4 angles involved to a value much smaller than 180°. The existence of a dead zone (wedge) in front of the blade when cutting at large cutting angles will affect the value and distribution of vacuum water pressure on the interface. He, (1998), proved experimentally that also in water saturated sand at large cutting angles a wedge will occur. The main questions however are; at which blade angle does a wedge start to occur, how does this depend on the soil mechanical, geometrical and operational parameters and what will be the geometry of the wedge. Based on the equilibrium of moments a solution is found to answer these questions.
机译:当切割水饱和的沙子时(通常在疏,、农业和土壤运动中进行),该过程以膨胀现象为主。基于孔隙压力计算以及水平力和垂直力的平衡,可以导出方程式来预测切削力。 Miedema等人(1983-2005)在先前的论文中已经广泛描述了该模型的推导。在导出的方程中,分母包含所涉及的四个角之和的正弦值,即切削角α,剪切角β,内摩擦角ψ和土壤界面摩擦角δ。因此,当这四个角度的总和接近180°时,正弦将变为零,切削力将变为无限大。当这四个角度的总和大于180°时,正弦变为负值,切削力也将变为负值。由于这实际上不会发生,因此自然界必须为这4个角度之和接近180°的情况选择不同的机制。 Hettiaratchi和Reece(1975)发现了一种机制,他们将边界楔形称为干燥土壤。在大切削角度下,三角形楔形物将存在于刀片前面,而不相对于刀片移动。该楔形物用作具有较小叶片角的叶片。实际上,这将所涉及的4个角度之和减小到远小于180°的值。当以大角度切割时,刀片前存在死区(楔形区)将影响界面上真空水压的值和分布。他(1998年)通过实验证明,在大切削角度的饱和水砂中,也会出现楔形现象。然而,主要问题是;在哪个叶片角度开始出现楔形,这如何取决于土壤的机械,几何和操作参数以及楔形的几何形状。基于力矩的平衡,找到了一种解决方案来回答这些问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号