首页> 外文会议>Fourth Joint Meeting of the U.S. Sections of the Combustion Institute: Western States, Central States, Eastern States: Abstracts >Thermochemical Kinetic Analysis on Chain Branching in Alkyl Radical Reactions with O2: n-Propyl andHydroperoxide-Propyl Radicals
【24h】

Thermochemical Kinetic Analysis on Chain Branching in Alkyl Radical Reactions with O2: n-Propyl andHydroperoxide-Propyl Radicals

机译:与O2的烷基自由基反应中链支化的热化学动力学分析:正丙基和环氧过氧丙基自由基

获取原文

摘要

Ab initio and density functional calculations are performed to determine thermochemical and kinetic parameters inanalysis association reactions of the n-propyl (CCC?) and the hydroperoxide-propyl radicals, C?CCOOH andCC?COOH, with O2. The CBS-Q//B3LYP/6-31G(d,p) composite method is utilized to calculate energies from theB3LYP/6-31G(d,p) optimized geometries. The n-propyl + O2 reaction forms an energized peroxy adduct with acalculated well depth of 36 kcal mol-1. The transition states of direct molecular elimination to C=CC + HO2, 1,5H-shift isomerization to form a hydroperoxide-propan-1-yl adduct (C?CCOOH), 1,4 H-shift isomerization tohydroperoxide-propan-2-yl adduct (CC?COOH), and products of C=CC + HO2 and CYCOC + OH all haveenergy barriers below the reactants. The hydroperoxide-propan-1-yl radical (C?CCOOH) + O2 system has threereaction paths, which have lower energies than the entrance channel; two of which lead to chain branching. Thehydroperoxide-propan-2-yl adduct (CC?COOH) + O2 system is more complex; but intramolecular reactions of theadduct have higher barriers then that of (C?CCOOH) + O2. An elementary reaction mechanism is constructed tomodel experimental data on negative temperature behavior data in propane oxidation. The chain branching neededfor the negative temperature coefficient (NTC) comes from the isomerization of the propyl peroxy radicalCCCOO? to C?CCOOH, with subsequent addition of another O2 to produce ?OCCC=O + 2 OH and fromchemical activation reaction to ?OOCCCO? + OH products. A small amount of chain branching comes frompropyl-hydroperoxide, dissociation.
机译:进行从头算和密度泛函计算以确定分子筛中的热化学和动力学参数 丙基(CCC4)与氢过氧化物-丙基,C3CCOOH和 CC?COOH,含氧气。 CBS-Q // B3LYP / 6-31G(d,p)复合方法用于计算能量 B3LYP / 6-31G(d,p)优化的几何形状。正丙基+ O2反应形成带电的过氧加合物 计算的井深为36 kcal mol-1。直接分子消除到C = CC + HO2,1,5的过渡态 H-转移异构化形成氢过氧化物-丙-1-基加合物(C2CCOOH),1,4 H-转移异构化为 氢过氧化物-丙烷-2-基加合物(CC?COOH)和C = CC + HO2和CYCOC + OH的产物均具有 反应物下方的能量屏障。氢过氧化物-丙-1-基(C2CCOOH)+ O2系统具有三个 反应路径的能量比入口通道的能量低;其中两个导致链分支。这 氢过氧化物-丙烷-2-基加合物(CC?COOH)+ O2系统更复杂;但是分子内的反应 加合物的阻挡层比(C2CCOOH)+ O2高。基本的反应机理被构造为 丙烷氧化负温度行为数据的模型实验数据。所需的链分支 负温度系数(NTC)来自丙基过氧自由基的异构化 CCCOO?生成COCCO = O + 2 OH,然后加入另一种O2生成COCCO = O + 2 OH。 化学活化反应成“ OOCCCO” + OH产品。少量的链分支来自 丙基氢过氧化物,离解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号