首页> 外文会议>AIChE annual meeting >Assessment of Pore Diffusion Limitations for the near Critical and Supercritical Fischer-Tropsch Synthesis
【24h】

Assessment of Pore Diffusion Limitations for the near Critical and Supercritical Fischer-Tropsch Synthesis

机译:近临界临界近临界近临界近临时杂草杂交合成评估孔隙扩散限制

获取原文

摘要

The catalyst material in the commercial FTS fixed bed reactors is called a pellet, which is 1 to 6 mm in size and contains macro, meso and micro pores. These pores are generally assumed to be filled with liquid hydrocarbon products in conventional gas phase FTS process or with supercritical solvent and hydrocarbon products in supercritical fluid FTS (SCF-FTS). As a result of pore filling, transport of reactants and products to and from the metal surfaces becomes slow and is sometimes the rate controlling step [1]. In such a situation, the heavy molecules diffuse at slower rate compared to lighter molecules. This difference in the transport properties alters the reactant and product concentrations near the active sites and creates spatial variations in the H2/CO ratio in the catalyst pellet; it also affects both the FTS conversion and product selectivity [2,3,4]. Therefore, it is very important to understand and to develop an appropriate method to estimate the actual pellet behavior for detailed reactor design. In general the supercritical fluid region is very wide whereby the reaction temperature and pressure are the only two variables to manipulate the reaction environment from liquid-like properties (i.e. diffusivities) to gas-like ones. In the process of tuning transport properties, there is a possibility that the reaction moves from a kinetic controlled regime to diffusion controlled regime. Therefore, analyzing only the variations in transport properties (diffusivity, density and viscosity) with respect to operating conditions is not sufficient for optimal reactor design. The relative change in the diffusion rate with respect to the rate of reaction has to be determined to identify the optimal operating regime [3].
机译:商业FTS固定床反应器中的催化剂材料称为颗粒,尺寸为1至6mm,含有宏,中索和微孔。通常假设这些孔在常规气相FTS过程中填充有液态烃产物或以超临界流体FTS(SCF-FTS)的超临界溶剂和烃产物。由于孔隙填充,反应物和来自金属表面的反应物和产物的运输变慢,有时是速率控制步骤[1]。在这种情况下,与较轻的分子相比,重的分子以较慢的速率弥散。运输性能的这种差异改变活性位点附近的反应物和产物浓度,并在催化剂颗粒中产生H2 / C共比的空间变化;它还影响FTS转换和产品选择性[2,3,4]。因此,理解并开发一种适当的方法来估算详细反应堆设计的实际颗粒行为是非常重要的。通常,超临界流体区域非常宽,由此反应温度和压力是仅将反应环境从液体样品(即扩散性)的反应环境处理到气体状的两个变量。在调谐运输性能的过程中,反应从动力控制制度移动到扩散控制的制度的可能性。因此,仅分析相对于操作条件的传输性能(扩散,密度和粘度)的变化是不足的最佳反应器设计。必须确定相对于反应速率的扩散速率的相对变化以识别最佳操作方案[3]。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号