【24h】

LOW-TEMPERATURE AIR OXIDATION OF URANIUM DIOXIDE SINGLE CRYSTALS

机译:二氧化铀单晶的低温空气氧化

获取原文

摘要

Accidental oxidation of uranium dioxide pellets is the most critical event which may affect the long-term storage of the spent nuclear fuel. Therefore the safety of a nuclear waste disposal lies on the determination of the mechanisms which lead to the alteration of UO_2 upon air oxidation. More precisely, the study of the formation of hyperstoichiometric oxides, intermediate fluorite-type U_3O_7/U_4O_9 or layered U_3O_8, is of prime importance since the formation of the latter one has to be firmly avoided. The experiments reported in this paper serve such a purpose with the study of the transformations (stoichiometry, depth and structure) occurring during the low-temperature (T = 180°C) air oxidation of uranium dioxide single crystals. Nuclear microanalysis techniques, more particularly Rutherford backscattering in channeling conditions, are perfectly adapted to this study since they allow to characterize the surface region (up to a depth of a few micrometers) of a solid material. Furthermore the influence of damage production on the oxidation behavior of the nuclear fuel is also investigated by external pre-irradiation of the UO_2 single crystals with high-energy heavy ions simulating fission fragment irradiation in the reactor. The results show that air oxidation at T = 180°C leads to the formation and in-depth growth of a U_3O_7/U_4O_9 oxide layer; no layered U_3O_8 oxide was detected even at the largest oxidation time investigated (1200 hours). The growth kinetic of U_3O_7/U_4O_9 oxide exhibits a linear behavior, indicating that the rate of oxidation is interface-controlled. The linear oxidation rate extracted from the data is of the order of 1.8 x 10~(-13) m s~(-1), i.e. close to the oxidation rate estimated for sintered pellets. Contrarily to previous works, our results show very little influence of the crystallographic orientation of the single crystals on the oxidation kinetics. More surprisingly, pre-irradiation of UO_2 samples with swift heavy ions, leading to the polygonization of the material, does not lead to significant changes in the oxidation behavior (stoichiometry or oxidation rate) of UO_2 single crystals.
机译:二氧化铀颗粒的意外氧化是最关键的事件,它可能影响乏核燃料的长期储存。因此,核废料处置的安全性取决于确定导致空气氧化时UO_2发生变化的机理。更确切地说,研究超化学计量氧化物,中间萤石型U_3O_7 / U_4O_9或层状U_3O_8的形成至关重要,因为必须严格避免后者的形成。本文报道的实验通过研究二氧化铀单晶的低温(T = 180°C)空气氧化过程中发生的转变(化学计量,深度和结构)而达到了这一目的。核微分析技术,尤其是在通道条件下的卢瑟福反向散射技术,由于可以表征固体材料的表面区域(最深为几微米),因此非常适合该研究。此外,还通过模拟反应堆中裂变碎片辐照的高能重离子对UO_2单晶进行外部预辐照,研究了损害产生对核燃料氧化行为的影响。结果表明,在T = 180°C时,空气氧化导致U_3O_7 / U_4O_9氧化物层的形成和深度生长。即使在研究的最大氧化时间(1200小时)也未检测到层状的U_3O_8氧化物。 U_3O_7 / U_4O_9氧化物的生长动力学表现出线性行为,表明氧化速率受界面控制。从数据中提取的线性氧化速率约为1.8 x 10〜(-13)m s〜(-1),即接近于烧结球料的估计氧化速率。与以前的工作相反,我们的结果表明,单晶的晶体取向对氧化动力学的影响很小。更令人惊讶的是,用快速重离子对UO_2样品进行预辐照会导致材料发生多边形化,但不会导致UO_2单晶的氧化行为(化学计量或氧化速率)发生显着变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号