首页> 外文会议>SPWLA annual logging symposium >GRAIN DENSITY CORRECTION OF THE DENSITY LOG; A CORE-LOG CALIBRATION METHOD FOR IMPROVED POROSITY PREDICTION IN MINERALIZED MICACEOUS SANDSTONE RESERVOIRS
【24h】

GRAIN DENSITY CORRECTION OF THE DENSITY LOG; A CORE-LOG CALIBRATION METHOD FOR IMPROVED POROSITY PREDICTION IN MINERALIZED MICACEOUS SANDSTONE RESERVOIRS

机译:密度记录的谷物密度校正;矿化微砂岩储层孔隙度预测的岩心测井标定方法

获取原文

摘要

In clastic environments, the density log is often found to be the most suitable log measurement for porosity prediction because total porosity can be determined directly from core calibration of the density tool response equation. Calibration values for rock matrix/grain density and fluid density are typically determined from crossplots of core porosity versus the density log over zones of constant fluid content. Experience has shown that whilst this methodology works well in homogeneous quartz intervals, it can lead to significant under-estimation of porosity when the rock grain constituents include variable amounts of heavy minerals and micas in addition to quartz. A drawback with the basic density log calibration approach is the assumption of constant rock matrix/grain density. In several Brent Group Fields, core grain density measurements range from 2.64 to over 2.75 g/cc in mineralized and micaceous sections, (with clay volume typically less than 10%). In these circumstances, an average grain density value will at best give only an average prediction of actual porosity. Consequently, a two-stage porosity calibration technique has been developed that uses the core grain density measurements to directly account for the effects of variable rock matrix/grain density. In the first stage of the porosity calibration, core grain density measurements are used to construct a grain density corrected density log. The corrected log represents the density log that would have been recorded if the grain density had been constant at 2.65 g/cc. With lithological variations accounted for, the second stage of the porosity calibration then only requires a consistent fluid zonation for the evaluation of fluid density effects. The paper shows results of applying the technique in two Brent Group Fields from the Norwegian North Sea. In the first Field Study, there were sufficient core data to make continuous grain density corrections using bridged core grain density values. A poor match between the recorded density log and core porosity was transformed into a near overlay after correction for the high and variable grain density values. In the second Field Study, application of the technique maximised the value of limited core data. The two-stage calibration approach enabled grain density variations to be accounted for at a very fine reservoir zonation scale. If the traditional approach of simultaneous definition of fluid density and grain density values had been followed, the limited core data would have forced the averaging of both fluid and grain density values over a much coarser lithological zonation scale.
机译:在碎屑环境中,经常发现密度测井是最适合孔隙度预测的测井记录,因为总孔隙度可以直接从密度工具响应方程的岩心校准中确定。岩石基体/颗粒密度和流体密度的校准值通常由岩心孔隙率与恒定流体含量区域上的密度对数的交会图确定。经验表明,尽管这种方法在均匀的石英层段中效果很好,但是当岩石成分中除了石英之外还包括不同数量的重矿物和云母时,会导致孔隙率明显偏低。基本密度测井校准方法的一个缺点是假设岩石基体/颗粒密度恒定。在几个布伦特小组油田中,矿化和云母部分的核心颗粒密度测量值从2.64到2.75 g / cc以上(粘土体积通常小于10%)。在这些情况下,平均晶粒密度值充其量只能给出对实际孔隙率的平均预测。因此,已经开发出一种两阶段的孔隙率校准技术,该技术使用岩心颗粒密度测量值来直接考虑可变岩石基质/颗粒密度的影响。在孔隙率校准的第一阶段,使用核心晶粒密度测量来构建晶粒密度校正后的密度测井曲线。校正的对数表示如果晶粒密度恒定为2.65 g / cc,则将记录的密度对数。考虑到岩性变化后,孔隙度校准的第二阶段仅需要一致的流体分区即可评估流体密度效应。本文显示了在挪威北海的两个布伦特群油田中应用该技术的结果。在第一个现场研究中,有足够的岩心数据,可以使用桥接的岩心晶粒密度值进行连续的晶粒密度校正。在对高和可变的晶粒密度值进行校正之后,记录的密度测井曲线与岩心孔隙率之间的差匹配将转化为近叠层。在第二个现场研究中,该技术的应用使有限的核心数据的价值最大化。两阶段校准方法可以在非常精细的储层分区规模下解决颗粒密度的变化。如果遵循同时定义流体密度和颗粒密度值的传统方法,则有限的岩心数据将迫使对流体和颗粒密度值两者均进行更粗略的岩性分区。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号