首页> 外文会议>Conference Proceedings at ANTEC '98 >STANDARD TEST PROCEDURES FOR RELEVANT MATERIAL PROPERTIES FOR STRUCTURAL ANALYSIS
【24h】

STANDARD TEST PROCEDURES FOR RELEVANT MATERIAL PROPERTIES FOR STRUCTURAL ANALYSIS

机译:结构分析相关材料性能的标准测试程序

获取原文

摘要

Uniform standards for measuring mechanical properties of plastics will lead to consistent test data. However, for the design engineer, the usefulness of the data in predicting part performance is also very important. If the data is dependent on test specimen geometry or the type of loading, it cannot be used to predict component behavior. Data reported for flexural strength of unfilled and fiber-filled thermoplastics is about 50% greater than the tensile strength. This is simply a miscalculation of the flexural strength since elastic beam equations are used for the nearly fully plastic behavior of thermoplastics. The proper flexural strength calculation would be 2/3 times the elastic beam equation. The flexural strength would then be about the same as the tensile strength. Also, gate location and its effect on part deflection for fiber-filled materials can be treated with an orthotropic stress analysis. Izod and Charpy impact tests are simply two different beam bending loads (cantilever and 3-point bending) yielding single-point information. To predict ductile/brittle behavior of parts, geometry can be captured with a geometric severity factor and compared to the strength ratio―the material's critical maximum principal stress at the appropriate strain rate and temperature divided by the yield stress. Creep data displayed as "effective modulus" graphs provide useful geometry-independent design information for situations where time and temperature are important. HDT is simply a geometry and loading dependent temperature that is not useful for design purposes. The plastics industry must strive to develop standard mechanical tests that are independent of specimen geometry and thus useful to the design engineer who is responsible for part performance.
机译:用于测量塑料机械性能的统一标准将导致一致的测试数据。但是,对于设计工程师而言,数据在预测零件性能方面的实用性也非常重要。如果数据取决于试样的几何形状或载荷类型,则不能用于预测组件的行为。所报告的未填充和纤维填充的热塑性塑料的抗弯强度的数据比拉伸强度大约50%。这仅仅是弯曲强度的错误计算,因为弹性梁方程用于热塑性塑料的几乎完全塑性的行为。适当的抗弯强度计算将是弹性梁方程的2/3倍。挠曲强度于是将与拉伸强度大致相同。同样,可以通过正交各向异性应力分析来处理浇口位置及其对纤维填充材料的零件变形的影响。艾佐德(Izod)和夏比(Charpy)冲击测试只是两个不同的梁弯曲载荷(悬臂和三点弯曲),产生单点信息。为了预测零件的延性/脆性行为,可以使用几何严重性因子来捕获几何形状,并将其与强度比(在适当的应变速率和温度下材料的临界最大主应力除以屈服应力)进行比较。显示为“有效模量”图的蠕变数据可在时间和温度很重要的情况下提供有用的与几何无关的设计信息。 HDT只是几何形状和与负载有关的温度,对于设计目的没有用。塑料行业必须努力开发独立于样品几何形状的标准机械测试,从而对负责零件性能的设计工程师有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号