首页> 外文会议>International symposium on Physical design >Physical design challenges for multi-million gate SoC's
【24h】

Physical design challenges for multi-million gate SoC's

机译:多百万门SoC的物理设计挑战

获取原文

摘要

This talk addresses current and future physical design methodology evolution for large complex System-on-Chip like Set Top Box devices within STMicroelectronics. Set Top Boxes have become one of the fastest growing segments of home electronics market. Set Top Box devices are built around an On Chip Bus which connects the internal processor with the audio processing, video processing, security, and communication units. These units are composed of elementary IP (Intellectual Property) blocks. The number and complexity of such units vary depending on the market segment to be addressed, from low-end to high-end devices. Overall circuit complexity varies from 2 Million instances to 5+ Million instances. Process choice, ranging now from 130nm to 65nm, must be approached in the context of the consumer market, where cost and time to market are the dominant factors.Historically, limited hardware and software capabilities led to physical integration of the chip with a "low granularity" hierarchical manner,almost IP block centric. Top down approach was used, integrating mostly soft IP blocks. The efficiency in terms of silicon utilization was quite limited, but integration process was simple.Moving to fast 64 bits workstations, the hardware limit dropped, allowing grouping of more blocks together, showing the need to rethink the physical partitioning process, also linked to more demanding On Chip Bus performances.One of the key aspects of this approach is to isolate logical and physical hierarchies, which allows taking advantage of platform based design tools for the front-end design capture, and gives more flexibility to physical design. Focus was placed on partitioning process, and especially the impact on the On Chip Bus micro architecture, budgeting and prototyping. Crucial challenges remain in top level hierarchical clock distribution and multimode/multi-corner convergence. Overall productivity increases due to limited number of physical partitions.New tools capabilities allow now to think doing such circuits flat, but is this always a good solution? The choice has to be made considering maturity of the RTL, risks of last minute changes, predictable runtimes for implementation, and parallelism of the physical design process (time to market impact).Today the perceived best solution is a mix of hierarchical design for initial physical database creation, and flat final optimization. The details of such a hybrid approach will be presented in this talk.
机译:本谈话解决了STMicroelectronics内的大型复杂系统的电流和未来的物理设计方法演化。套装顶盒已成为家用电子市场增长最快的部分之一。设置顶部框设备围绕芯片总线构建,使用音频处理,视频处理,安全性和通信单元连接内部处理器。这些单位由基本IP(知识产权)块组成。这些单位的数量和复杂性因待解决的市场分部而异,从低端到高端设备。整体电路复杂性因200万个实例而异到500万个实例。流程选择,现在从130nm到65nm,必须在消费市场的背景下接近,其中成本和上市时间是主导因素。系统,有限的硬件和软件功能导致芯片的物理集成,具有“低电平”粒度“分层方式,几乎IP块中心。使用顶部的方法,集成了多个软件IP块。硅利用率方面的效率非常有限,但集成过程很简单。为快速64位工作站才删除,允许将更多块分组在一起,显示需要重新思考物理分区过程,也链接到更多对芯片总线表演要求苛刻。这种方法的关键方面的关键方面是隔离逻辑和物理层次结构,这允许利用基于平台的前端设计捕获的设计工具,并为物理设计提供更大的灵活性。焦点被放置在分区过程中,尤其是对芯片总线微架构的影响,预算和原型。关键挑战仍保持在顶级分层时钟分布和多模/多角收敛。由于有限数量的物理分区,整体生产率增加。新工具功能现在允许思考此类电路平,但这总是一个好的解决方案?必须考虑考虑RTL的成熟度,最后一分钟的风险,实现的可预测的运行时间,以及物理设计过程的并行性(市场影响时间)。将感知的最佳解决方案是初始设计的混合分层设计物理数据库创建,以及扁平最终优化。这种混合方法的细节将在此谈话中呈现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号