首页> 外文会议>International symposium on Physical design >Boosters for driving long on-chip interconnects
【24h】

Boosters for driving long on-chip interconnects

机译:助推器用于驱动长片互连

获取原文

摘要

Trends in CMOS technology and VLSI architectures are causing interconnect to play an increasing role in overall performance, power consumption and design effort. Traditionally, repeaters are used for driving long on-chip interconnects, however recent studies indicate that repeaters are using increasing area, power, and design resources as well as having an inherent limit in how much they can improve performance [4,10,14]. This paper presents a new circuit called a {f booster} which compares favorably with repeaters in terms of area, performance, power and placement sensitivity. Boosters also have the advantage of being bidirectional and providing a low impedance termination to improve signal integrity. Driver edge rates are slower and peak power is drastically reduced compared to repeaters, thus improving signal integrity and mitigating inductive effects. Boosters are shown to be more than 20% faster for driving a variety of interconnect loads over conventional repeaters in 0.16 $mu$m CMOStechnology. Boosters are typically inserted three times less frequently than repeaters for optimal performance, resulting in fewer boosters for driving the same interconnect lengths thereby saving on area, power and placement effort.

Unlike differential, dynamic or low-swing techniques which require significantly more sophisticated circuit design and hence are cumbersome for automatic interconnect synthesis tools, boosters can be inserted on lines in a straightforward manner. Based on analytical delay models, we derive rules for insertion and sizing of boosters that can easily be incorporated into a CAD tool. We formulate two design rules that determine 1) the number of boosters needed, 2) their placements and 3) sizes, for driving a given interconnect load, first minimizing delay, and then area and power. Power analysis is slightly more complex than for repeaters so we present a systematic design approach. A placement sensitivity analysis comparing

机译:> CMOS技术和VLSI架构的趋势导致互连在整体性能,功耗和设计工作中起着越来越大的作用。传统上,中继器用于驱动长片上互连,然而,最近的研究表明,中继器正在使用增加的区域,功率和​​设计资源以及它们可以提高性能的多大限制[4,10,14] 。本文介绍了一个名为A { BF增强器}的新电路,在面积,性能,功率和放置灵敏度方面,对中继器有利地比较。助推器还具有双向的优点,并提供低阻抗终端以提高信号完整性。与中继器相比,驾驶员边缘速率较慢,峰值功率大大降低,从而提高了信号完整性和减轻诱导效果。在0.16 $ mu $ M COSTEchnology的常规中继器中,助推器显示出超过20 %的速度。助推器通常比中继器频繁地插入三倍以获得最佳性能,导致较少的助推器驱动相同的互连长度,从而节省了面积,功率和放置工作。 >与差分,动态或低摆动技术不同这需要明显更复杂的电路设计,因此对于自动互连合成工具有麻烦,可以以直接的方式在线上插入助推器。基于分析延迟模型,我们推导了可以容易地结合到CAD工具中的助推器的插入和尺寸的规则。我们制定了两个设计规则,确定了1)所需的助推器数量,2)其放置和3)尺寸,用于驱动给定的互连负载,首先最小化延迟,然后是面积和功率。功率分析比中继器略微复杂,因此我们提出了一种系统的设计方法。放置敏感性分析比较

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号