【24h】

Design of Molecular Magnets

机译:分子磁铁的设计

获取原文
获取原文并翻译 | 示例

摘要

The conventional magnetic materials used in present-day technology, such as Fe, Fe_2O_3, Cr_2O_3, SmCo_5, Nd_2Fe_(14)B, etc. are all atom-based, whose synthesis requires high-temperature routes. Employing ambient-temperature synthetic organic chemistry, it has become possible to engineer a bulk molecular material with long-range magnetic order, primarily due to the weak nature of intermolecular interactions in it. Typical synthetic approach to design molecule-based magnets consists of choosing molecular precursors, each bearing an unpaired spin, and assembling them in such a way that there is no compensation of spins at the scale of the crystal lattice. Magnetism being a co-operative effect, the spin-spin interaction must extend to all the three dimensions, either through space or through bonds. Specific occurrence of 'spin delocalisation' and 'spin polarisation' in molecular lattices is helpful in bringing about ferromagnetic interaction by facilitating necessary intermolecular exchange interactions. Since the first successful synthesis of molecular magnets in 1986, a large variety of them have been synthesized, which can be classified on the basis of the chemical nature of the magnetic units involved: organic systems, metal-based systems, hetero-bimetallic assemblies, or mixed organic-inorganic systems. The design of molecular magnets has also opened the doors for the unique possibility of designing polyfunctional molecular materials, such as magnets exhibiting second-order optical nonlinearity, liquid crystalline magnets, or chiral magnets. Solubility of molecular magnets, their low density and biocompatibility are attractive features. Being weakly colored, unlike the opaque classic magnets, possibilities of photomagnetic switching can be envisaged. Persistent efforts continue to design the ever-elusive polymer magnets for applications in industry. While providing a brief overview of the field of molecular magnetism, we highlight some recent developments, with emphasis on a few studies from the author's own lab.
机译:Fe,Fe_2O_3,Cr_2O_3,SmCo_5,Nd_2Fe_(14)B等当今技术中使用的常规磁性材料都是基于原子的,其合成需要高温路线。利用环境温度合成有机化学技术,主要由于分子间相互作用的弱性,可以设计具有长程磁序的大分子材料。设计基于分子的磁体的典型合成方法包括选择分子前驱体,每个前驱体带有不成对的自旋,并以在晶格尺度上没有自旋补偿的方式组装它们。磁性是一种合作效应,自旋-自旋相互作用必须通过空间或通过键延伸到所有三个维度。分子晶格中“自旋离域”和“自旋极化”的特定出现有助于通过促进必要的分子间交换相互作用来实现铁磁相互作用。自1986年首次成功合成分子磁体以来,已经合成了各种各样的分子磁体,可以根据所涉及的磁性单元的化学性质对其进行分类:有机系统,金属基系统,异双金属组件,或混合的有机-无机系统。分子磁体的设计也为设计多功能分子材料(例如表现出二阶光学非线性的磁体,液晶磁体或手性磁体)的独特可能性打开了大门。分子磁体的溶解性,低密度和生物相容性是吸引人的特征。与不透明的经典磁铁不同,由于颜色较弱,因此可以设想光磁转换的可能性。持续不断的努力设计出难以捉摸的聚合物磁体,以用于工业应用。在提供分子磁性领域的简要概述的同时,我们重点介绍了一些最新进展,重点是作者自己实验室的一些研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号