【24h】

ALL-2D SEMICONDUCTOR/METAL CONTACTS

机译:ALL-2D半导体/金属触点

获取原文
获取原文并翻译 | 示例

摘要

First-principles calculations are used to explore the geometry, bonding, and electronic properties of MoS_2/Ti_2C and MoS_2/Ti_2CY_2 (Y = F and OH) semiconductor/ metal contacts. Strong chemical bonds are formed at the MoS_2/Ti_2C interface and result in additional states around the Fermi level, which extend over the three atomic layers of MoS_2 and induce a metallic character. The interaction in MoS_2/Ti_2CY_2, on the other hand, is weak and not sensitive to the geometry, and the semiconducting nature of MoS_2 is preserved. The energy level alignment implies a weak and strong n-type doping of MoS_2 in contact with Ti_2CF_2 and Ti_2C(OH)_2, respectively, with corresponding Schottky barrier heights of 0.85 and 0.26 eV. We show that the MoS_2/ Ti_2CF_2 contact is close to the Schottky limit, whereas at the MoS_2/Ti_2C(OH)_2 contact we obtain a strong dipole due to charge rearrangement. The weak interaction between MoS_2 and Ti_2CY_2 can be interpreted as physisorp-tion. As a consequence, the electronic properties of the Ti_2CY_2 subsystem are hardly changed, in particular the characteristic metallicity. The conduction and valence bands largely maintain their characters, with the CBM and VBM still being located at the K point, though the interaction enhances the band gaps by 0.13 and 0.16 eV, respectively. These increments mainly can be ascribed to the lattice compression of 1.3%. Taking the vacuum level as reference value, we can align the energy levels of the two hybrid systems to get detailed insight into the CBM and VBM shifts in MoS_2 upon physi-sorption. The lattice compression induces shifts of the VBM and CBM by 0.15 and 0.29 eV, respectively. We find the Fermi level in MoS_2/Ti_2CF2 only 0.06 eV above the midgap, (CBM+VBM)/2, suggesting weakly n-type doped MoS_2, while it is much closer to the CBM in MoS_2/Ti_2C(OH)_2, indicating stronger doping. This gives rise to a flexible approach to realize n-type doping of MoS_2 by 2D material contacts. The investigated interfaces therefore are well suited for application in all-2D devices.
机译:第一性原理计算用于探索MoS_2 / Ti_2C和MoS_2 / Ti_2CY_2(Y = F和OH)半导体/金属触点的几何形状,键合和电子性能。在MoS_2 / Ti_2C界面处形成强化学键,并在费米能级附近产生其他状态,这些状态在MoS_2的三个原子层上延伸并产生金属特性。另一方面,MoS_2 / Ti_2CY_2中的相互作用较弱并且对几何形状不敏感,并且保留了MoS_2的半导体性质。能级排列意味着分别与Ti_2CF_2和Ti_2C(OH)_2接触的MoS_2的弱和强n型掺杂,其肖特基势垒高度分别为0.85和0.26 eV。我们表明,MoS_2 / Ti_2CF_2接触接近肖特基极限,而在MoS_2 / Ti_2C(OH)_2接触中,由于电荷重排,我们获得了一个强大的偶极子。 MoS_2和Ti_2CY_2之间的弱相互作用可以解释为物理吸附。结果,几乎不改变Ti_2CY_2子系统的电子性质,特别是特征金属性。导带和价带在很大程度上保持其特性,CBM和VBM仍位于K点,尽管相互作用使带隙分别增加了0.13 eV和0.16 eV。这些增加主要可以归因于1.3%的晶格压缩。以真空度为参考值,我们可以调整两个混合系统的能级,以详细了解物理吸附后MoS_2中CBM和VBM的变化。晶格压缩引起VBM和CBM的位移分别为0.15和0.29 eV。我们发现MoS_2 / Ti_2CF2中的费米能级仅比中能隙(CBM + VBM)/ 2高0.06 eV,表明n型掺杂的MoS_2较弱,而与MoS_2 / Ti_2C(OH)_2的CBM则更接近,表明较强的掺杂。这带来了一种灵活的方法,可以通过2D材料接触实现MoS_2的n型掺杂。因此,研究的接口非常适合在所有2D设备中应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号