首页> 外文会议>IUPAC 10th International conference on novel materials and their synthesis: Book of abstracts >STEREOCOMPLEX CRYSTALLIZATION OF POLYLACTIC ACID (PLA) AND APPLICATIONS
【24h】

STEREOCOMPLEX CRYSTALLIZATION OF POLYLACTIC ACID (PLA) AND APPLICATIONS

机译:聚乳酸的立体复合结晶及其应用

获取原文
获取原文并翻译 | 示例

摘要

Poly (lactide) (PLA) is a plant-derived polymer that has been intensively investigated because it is biodegradable, producible from renewable resources, nontoxic to the human body and the environment, and can be decomposed in natural environment. PLA has three isomeric forms, i.e. Poly (L-lactide) (PLLA), Poly (D-lactide) (PDLA), and Poly (racemic-lactide) (PDLLA), which display a wide variety of properties. Stereocomplexation can occur between PLLA and PDLA either in solution or in a solid state, which results in the formation of a stereocomplex crystallite (sc-crystallite) different from homo-crystallite of either PLLA or PDLA. The sc-crystallite endows PLA-based materials higher mechanical performances, thermal resistance, hydrolysis resistance, thus opening a new avenue to produce various types of biodegradable materials through tailoring the interaction. In this presentation, I will highlight some of our research in the areas: 1. The high thermal mechanical property observed in sc-crystallites could be attributed to the formation of extra non-conventional" hydrogen bond which lead to a more stable sc-crystal structure. 2. PLA nanocomposites formed by stereocomplexation of nano-filler-g-PDLA with commercial PLLA lead to high crystallinity of the resulting nanocomposites, low activation energy and also ensure a better interfacial interaction between nano-fillers and matrix. 3. Incorporation of rubber phase in PLA via copolymerization and the formation of sc-crystallite could lead to better mechanical property of PLA . Furthermore, with judicial design of interface, the PLA exhibits simultaneous enhancement in strengthen and toughness, overcoming the conflict normally observed in polymer composites. 4. Stereocomplexation of PDLA and PLLA could also be exploited to develop stimuli-responsive micelle or supramolecular hydrogel, which exhibit lower critical micelle concentration and gelation concentration, and could be potentially be used for biomedical applications.
机译:聚丙交酯(PLA)是一种植物衍生的聚合物,由于其可生物降解,可再生资源生产,对人体和环境无毒且可在自然环境中分解,因此受到了广泛研究。 PLA具有三种异构形式,即聚(L-丙交酯)(PLLA),聚(D-丙交酯)(PDLA)和聚(外消旋丙交酯)(PDLLA),它们具有多种特性。固溶可以在溶液或固态下在PLLA和PDLA之间发生,这导致形成不同于PLLA或PDLA均晶体的立体复合微晶(sc-微晶)。 sc-微晶赋予PLA基材料更高的机械性能,耐热性,耐水解性,从而开辟了通过定制相互作用来生产各种类型的可生物降解材料的新途径。在本演讲中,我将重点介绍我们在以下领域的一些研究:1.在sc-微晶中观察到的高热机械性能可能归因于形成了额外的非常规“氢键”,从而导致了更稳定的sc-微晶。 2.通过将纳米填料-g-PDLA与市售PLLA立体复合形成的PLA纳米复合材料导致所得纳米复合材料具有较高的结晶度,较低的活化能,并且还确保了纳米填料与基体之间更好的界面相互作用3.掺入通过共聚作用在PLA中形成橡胶相并形成sc-微晶可以改善PLA的机械性能,而且通过合理的界面设计,PLA的强度和韧性同时提高,克服了通常在聚合物复合材料中发现的冲突4 PDLA和PLLA的立体复合物也可用于开发刺激反应性胶束或超分子水凝胶,其表现出较低的临界胶束浓度和胶凝浓度,可以潜在地用于生物医学应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号