首页> 外文会议>International thermal treatment technologies(IT3) amp; hazardous waste combustors (HWC) joint conference 2009 >Numerical Simulations of the Temperature and Velocity Fields in a Plasma-Arc System and Equilibrium Calculations of Steam Injected for Syngas Recovery from POPs
【24h】

Numerical Simulations of the Temperature and Velocity Fields in a Plasma-Arc System and Equilibrium Calculations of Steam Injected for Syngas Recovery from POPs

机译:等离子弧系统中温度和速度场的数值模拟以及为从POPs中回收合成气而注入的蒸汽的平衡计算

获取原文
获取原文并翻译 | 示例

摘要

A direct current (DC) experimental facility of 30 kW with plasma-arc technology was set up to study the pyrolysis process in the laboratory. The temperature and velocity fields make a great impact on the transfer and reaction among the molecules, and so determining the destruction efficiency. It's difficult to directly measure the temperature of the arc region, therefore numerical simulation becomes a substitute method. According to the dimension of this facility, a magnetohydrodynamic model is used to simulate the temperature and velocity fields. The section drawings clearly exhibit the phenomenon of cathode jet and cathode spot. Furthermore, the treatment of Persistent Organic Pollutants (POPs) agents in a steam-plasma system for syngas recovery has been simulated. Based on the principle of Gibbs free energy minimum, the equilibrium product distribution versus steam content and temperature is calculated. Amount of syngas increases with the increase of temperature, the process acts as energy transformation - electrical energy is finally restored in the syngas. At the ideal temperature of POPs treatment, the energy recovered (Q_(re)) and the energy input (Q_(in)) both increase with the increase of steam content, but Q_(in) subtracted from Q_(re) gets to maximum while the molar ratio of oxygen to carbon (O/C) is near 1. The results show that the plasma-arc technology is an environmentally friendly and economically feasible for the disposal of POPs.
机译:建立了具有等离子弧技术的30 kW直流(DC)实验设备,以研究实验室的热解过程。温度和速度场对分子之间的转移和反应有很大影响,因此决定了破坏效率。很难直接测量电弧区域的温度,因此数值模拟成为一种替代方法。根据设施的规模,使用磁流体动力学模型来模拟温度和速度场。剖面图清楚地显示了阴极射流和阴极斑点的现象。此外,已经模拟了蒸汽等离子系统中用于合成气回收的持久性有机污染物(POPs)试剂的处理。根据吉布斯自由能最小值的原理,计算平衡产物分布与蒸汽含量和温度的关系。合成气的量随温度的升高而增加,该过程起到能量转化的作用-最终在合成气中恢复电能。在POPs处理的理想温度下,回收的能量(Q_(re))和能量输入(Q_(in))都随蒸汽含量的增加而增加,但是从Q_(re)中减去的Q_(in)达到最大值而氧与碳的摩尔比(O / C)接近1。结果表明,等离子弧技术对POPs的处理是一种环境友好且经济可行的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号