【24h】

Phase Transition of Multivariate Polynomial Systems

机译:多元多项式系统的相变

获取原文
获取原文并翻译 | 示例

摘要

A random multivariate polynomial system with more equations than variables is likely to be unsolvable. On the other hand if there are more variables than equations, the system has at least one solution with high probability. In this paper we study in detail the phase transition between these two regimes, which occurs when the number of equations equals the number of variables. In particular the limiting probability for no solution is 1/e at the phase transition, over a prime field.We also study the probability of having exactly s solutions, with s ≥ 1. In particular, the probability of a unique solution is asymptotically 1/e if the number of equations equals the number of variables. The probability decreases very rapidly if the number of equations increases or decreases. Our motivation is that many cryptographic systems can be expressed as large multivariate polynomial systems (usually quadratic) over a finite field. Since decoding is unique, the solution of the system must also be unique. Knowing the probability of having exactly one solution may help us to understand more about these cryptographic systems. For example, whether attacks should be evaluated by trying them against random systems depends very much on the likelihood of a unique solution.
机译:具有比变量多的方程的随机多元多项式系统可能是无法解决的。另一方面,如果变量多于方程式,则系统至少具有一个概率很高的解决方案。在本文中,我们详细研究了这两种状态之间的相变,这在方程数等于变量数时发生。特别是在素数场上,在相变过程中无解的极限概率为1 / e。我们还研究了s≥1时具有s个正解的概率。特别是,唯一解的概率渐近为1 / e如果方程式的数量等于变量的数量。如果方程的数量增加或减少,则概率非常迅速地降低。我们的动机是,许多密码系统可以表示为有限域上的大型多元多项式系统(通常是二次多项式)。由于解码是唯一的,因此系统的解决方案也必须是唯一的。知道只有一种解决方案的可能性可能有助于我们进一步了解这些密码系统。例如,是否应通过对随机系统进行尝试来评估攻击,这在很大程度上取决于采用独特解决方案的可能性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号