【24h】

Physical Metallurgy of Interstitial-Free Steels: Precipitates and Solutes

机译:无间隙钢的物理冶金:析出物和溶质

获取原文
获取原文并翻译 | 示例

摘要

Typical applications of interstitial-free(IF) or ultra-low carbon(ULC) steels are represented by both body structure and inner and outer panels. Depending upon the precise application, these steels must exhibit adequate levels of strength, formability, and weldability. Furthermore, there are applications where the yield point phenomenon must be avoided and where strain aging may or may not be attractive. There are at present two families of IF steels delineated by yield strength. The first is the soft, high formability version where the yield strength is near 150 MPa. The second is the high strength version, with a yield strength around 250 MPa. There are two approaches to achieving the higher strength. The first is based upon solid solution strengthening usually by phosphorus~(1), while the second relies on paint bake hardening of unstabilized steel.~(2) It is now accepted that the success of these steels is critically dependent upon achieving the proper solute carbon content. For example, the solute carbon content should be at or near zero in the low strength, high formability version since solute carbon is very deleterious to texture formation during cold rolling and annealing. This requirement obviously demands complete stabilization of the bulk carbon content. Paint bake hardening, on the other hand, relies on obtaining a certain solute carbon content after annealing to achieve the final strength after baking. Hence, whether one considers the low strength or the paint bake hardening versions, one thing is certainly true: the production of steel components of proper properties and uniformity relies on the precise disposition of carbon between particles and matrix. This disposition must not only be known with some certainty, but also must be obtainable in commercial practice. This paper will review some highlights of our work on the stabilization of carbon, thermomechanical processing, cold work embrittlement, and texture control of IF steels.
机译:无间隙(IF)或超低碳(ULC)钢的典型应用以车体结构以及内外板代表。根据精确的应用,这些钢必须表现出足够的强度,可成形性和可焊接性。此外,在某些应用中,必须避免屈服点现象,并且应变时效可能具有吸引力,也可能没有吸引力。目前有两种按屈服强度划分的中频钢。第一个是柔软的,高成形性的版本,其中屈服强度接近150 MPa。第二个是高强度版本,屈服强度约为250 MPa。有两种方法可以实现更高的强度。第一种是基于磷的固溶强化,(1),第二种是基于不稳定钢的油漆烘烤硬化。(2)现在,人们公认,这些钢的成功关键取决于获得适当的溶质。碳含量。例如,在低强度,高可成形性版本中,固溶碳含量应为零或接近零,因为固溶碳对冷轧和退火过程中的织构形成非常有害。显然,这一要求要求完全稳定整体碳含量。另一方面,涂料烘烤硬化取决于退火后获得一定的溶质碳含量,以达到烘烤后的最终强度。因此,无论是考虑低强度还是烤漆硬化版本,都有一件事是正确的:具有适当性能和均匀性的钢部件的生产取决于碳在颗粒和基体之间的精确分布。这种处置不仅必须确定地知道,而且必须在商业实践中可获得。本文将回顾我们在IF钢的碳稳定,热机械加工,冷作脆化和组织控制方面的工作重点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号