【24h】

Graphene-based optical absorbers in middle-infrared wavelengths

机译:中红外波长的基于石墨烯的光吸收剂

获取原文
获取原文并翻译 | 示例

摘要

In the visible and near infrared regions, graphene is essentially transparent with a constant absorptivity of 2.3%. On contrast, in longer wavelengths, the absorptivity can be enhanced by graphene plasmons motivated by simple nanostructures. Besides, the graphene plasmons can be further enhanced via electrostatic doping when voltage is applied. This work numerically demonstrates that in optimized configuration the absorptance in monolayer graphene can be greatly enhanced and reach to 98.6% of the impinging light for transverse magnetic (TM) polarizations. Graphene can interact with light via plasmonic resonance. Towards this, we utilize a subwavelength-thick optic cavity, which composed of graphene grating, a dielectric spacing layer and a metal film to further enhance the interaction. When we use the TM mode source, the incident light matched the graphene plasmons, a strong drastic cut in the energy of the reflected light, which means obvious resonance absorption occurred. Meanwhile, the reflection can approach 0 when voltage applied. Finally, great absorption in 6.94 μm has been achieved by the graphene grating with the addition of a subwavelength-thick optic cavity via different voltage.
机译:在可见光和近红外区域,石墨烯基本上是透明的,具有2.3%的恒定吸收率。相反,在更长的波长下,可以通过简单的纳米结构激发石墨烯等离子体激元来提高吸收率。此外,当施加电压时,可以通过静电掺杂进一步增强石墨烯等离子体激元。这项工作数值表明,在优化配置中,单层石墨烯中的吸收率可以大大提高,并达到横向磁(TM)极化入射光的98.6%。石墨烯可以通过等离子体共振与光相互作用。为此,我们利用亚波长厚的光学腔,该腔由石墨烯光栅,介电间隔层和金属膜组成,以进一步增强相互作用。当我们使用TM模式光源时,入射光与石墨烯等离子体激元匹配,反射光的能量被强烈切割,这意味着发生了明显的共振吸收。同时,当施加电压时,反射可以接近0。最后,通过石墨烯光栅并通过不同的电压增加了亚波长厚的光学腔,实现了6.94μm的大吸收。

著录项

  • 来源
  • 会议地点 Shanghai(CN)
  • 作者单位

    College of Physics, Optoelectronics and Energy Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, P. R. China,Key lab of Advanced Optical Manufacturing Technologies of Jiangsu Province Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, P. R. China;

    College of Physics, Optoelectronics and Energy Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, P. R. China,Key lab of Advanced Optical Manufacturing Technologies of Jiangsu Province Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, P. R. China,Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, P. R. China;

    College of Physics, Optoelectronics and Energy Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, P. R. China,Key lab of Advanced Optical Manufacturing Technologies of Jiangsu Province Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, P. R. China;

    Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, P. R. China,Suzhou Nanowin Science and Technology Co, Ltd, Suzhou 215123, P. R. China;

    Suzhou Nanowin Science and Technology Co, Ltd, Suzhou 215123, P. R. China;

    College of Physics, Optoelectronics and Energy Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, P. R. China,Key lab of Advanced Optical Manufacturing Technologies of Jiangsu Province Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, P. R. China;

    College of Physics, Optoelectronics and Energy Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, P. R. China,Key lab of Advanced Optical Manufacturing Technologies of Jiangsu Province Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, P. R. China;

    College of Physics, Optoelectronics and Energy Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, P. R. China,Key lab of Advanced Optical Manufacturing Technologies of Jiangsu Province Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, P. R. China;

    Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, P. R. China,Suzhou Nanowin Science and Technology Co, Ltd, Suzhou 215123, P. R. China;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    graphene; plasmonic; absorptance;

    机译:石墨烯等离子体吸收率;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号