【24h】

Texture Evolution during High Temperature Plane Strain Compression of High Silicon Steels

机译:高硅钢在高温平面应变压缩过程中的织构演变

获取原文
获取原文并翻译 | 示例

摘要

High silicon steel is used for electrical applications because its electrical resistivity is increased and the magnetostriction is reduced. A silicon content up to 6.5 wt.-% gives excellent magnetic properties. The improvement of the magnetic properties stays in contrast with the lack of ductility of these alloys, making their thermo-mechanical processing difficult. The optimum final microstructure and texture depends on the final application of the material: extremely big grains with a Goss orientation ({110} <001>) are desired in transformers and grains with an average size of 100 μm and cube component ({100} <001>) are used in electrical motors. A series of plane strain compression (PSC) tests were performed on 3 electrical steels, with a silicon content from 1.8 to 4.1 wt.-%, in a temperature range of 800 to 1100℃, strain rates between of 0.5 and 5 s~(-1). Reductions and time between deformation and quenching were also varied in order to study the recrystallisation progress. Apparent activation energies for hot working, calculated using the hyperbolic sine equation, was in good agreement with literature and higher than the activation energy for self diffusion in iron. These values increase with the silicon content. The high temperature texture evolution was investigated by means of electron back scattering Diffraction (EBSD) technique, which allows the quantification of important texture components in function of the thermo-mechanical parameters applied during hot rolling and the plane strain compression tests. The hot rolled microstructures have shown an average grain size of 140 um and a texture with a maximum on the cube fibre ({001} <-1-10>). The conventional α (<110> // RD) / γ (<111> // ND) fibre texture was developed after plane strain compression and their intensities depend on the deformation temperature and reduction. A similar tendency was observed for the fraction of static recrystallised grains.
机译:高硅钢用于电气应用是因为其电阻率增加且磁致伸缩减小。硅含量高达6.5 wt .-%可提供出色的磁性能。与这些合金缺乏延展性相反,保持了磁性的改善,这使得它们的热机械加工困难。最佳的最终微观结构和质地取决于材料的最终用途:变压器中需要具有高斯取向({110} <001>)的超大晶粒,平均尺寸为100μm的立方体和立方成分({100}) <001>)用于电动机。在800至1100℃的温度范围内,对3种硅含量为1.8至4.1 wt。-%的电工钢进行了一系列平面应变压缩(PSC)试验。应变速率在0.5至5 s〜( -1)。为了研究再结晶过程,还改变了变形和淬火之间的减少时间和时间。用双曲正弦方程计算的热加工的表观活化能与文献有很好的一致性,并且高于铁中自扩散的活化能。这些值随硅含量的增加而增加。通过电子反散射衍射(EBSD)技术研究了高温织构的演变,该技术可以根据在热轧和平面应变压缩试验中应用的热机械参数对重要的织构成分进行量化。热轧的显微组织的平均晶粒尺寸为140 um,立方纤维上的织构最大({001} <-1-10>)。常规的α(<110> // RD)/γ(<111> // ND)纤维织构是在平面应变压缩后形成的,其强度取决于变形温度和变形程度。对于静态再结晶晶粒的分数,观察到类似的趋势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号