首页> 外文会议>International Conference on Remote Sensing for Marine and Coastal Environments >HIGH RESOLUTION COASTAL CIRCULATION: MERGING MODELS AND OCEANCOLOR DATA*
【24h】

HIGH RESOLUTION COASTAL CIRCULATION: MERGING MODELS AND OCEANCOLOR DATA*

机译:高分辨率沿海环流:合并模型和海洋色数据*

获取原文

摘要

Remotely-sensed ocean color provides a window into coupled biogeophysical dynamics at thesurface of the coastal ocean. Satellite imagery provides synoptic, real-time measurements over largespatial scales; however, typical spatial resolution (250m – 1km) may be limiting when considering somecoastal processes that evolve over much finer spatial scales (such as ~10m’s) . Futhermore, temporalresolution is generally lacking in remote sensing imagery with approximately one or two passes per day incomparison to coastal processes which occur on hourly (or less) scales. Thus, the underlying physicalprocesses that influence the observed optical distributions are often too complex and are manifest at spaceand time scales that preclude full understanding from imagery alone. Alternatively, advanced numericalmodels of the coastal ocean applied at spatial scales of 10 to 100 m incorporate relevant coastal dynamics(such as wind, tide, and river forcing, vertical mixing, advection and dispersion), complex shorelines andbathymetry, and are able to predict coastal circulation over very short time scales throughout the entirewater column. These high-resolution models are often exercised as a virtual laboratory for understandingthe cause and effect between forcing and circulation. When coupled, numerical models and remotelysensedobservations can provide a powerful tool to both understand and predict dynamical processes andoptical patterns in coastal waters. From a military perspective, remotely-sensed ocean color data is oftenthe only observational window on ocean processes in denied areas making the coupling of satelliteimagery with numerical models all the more imperative for developing a preditive capability in suchregions.Aside from a deepened understanding of coastal processes, merging numerically modeledcirculation with satellite imagery can result in improvements to the modeled circulation, particularly inintertidal regions where few observations are available to quantify the land-sea interface. Once a morecomplete understanding of how ocean color data and modeled circulation are coupled, an appropriate dataassimilation approach can be developed that will allow coastal ocean models to take full advantage of theobservational information presented in the satellite imagery.SeaWIFS and MODIS satellites provide daily products of the bio-optical and SST properties forcharacterizing and monitoring coastal conditions (Arnone and Parsons, 2004). Advances in inter-satellitecalibration and atmospheric correction have been used to provide quantitative analyses of the opticalproperties in coastal areas. These satellites can now be used to determine how optical characterisiticschange from image to image; they provide a quantitative means for defining changes which can resultfrom the physical forcing. Current algorithms used with these ocean color satellites are based on semianayticalapproaches which use spectral changes to uncouple the inherent optical properies of absorption(total, phytoplanton, detritus and Colored dissolved organic) and backscatteirng (Lee et al. 2002). Thebackscattering properties are strongly associated with the particle concentration (in addition to the size ,shape, index of refraction). Additionally, optical propeites such as the beam attenuation coefficient?
机译:遥感海洋的颜色为沿海海洋表面的耦合生物地球物理动力学提供了一个窗口。卫星图像可提供大范围天气的实时实时测量;但是,当考虑一些沿更精细的空间尺度(例如〜10m)演化的沿海过程时,典型的空间分辨率(250m – 1km)可能会受到限制。此外,在遥感影像中通常缺乏时间分辨率,而与每小时(或更少)尺度上发生的沿海过程相比,每天大约需要经过一或两次。因此,影响观察到的光学分布的潜在物理过程通常过于复杂,并且在时空尺度上表现出来,从而无法完全从图像中完全理解。另外,在10到100 m的空间尺度上应用的沿海海洋的高级数值模型结合了相关的沿海动力学(如风,潮汐和河流强迫,垂直混合,对流和扩散),复杂的海岸线和测深法,并且能够预测沿海在整个水塔中,在很短的时间内进行循环。这些高分辨率模型通常用作虚拟实验室,以了解强迫和循环之间的因果关系。当耦合时,数值模型和遥感观测可以提供一个有力的工具来理解和预测沿海水域的动力学过程和光学模式。从军事角度来看,遥感海洋颜色数据通常是在禁区中海洋过程的唯一观察窗口,这使得将卫星图像与数值模型相结合对于在这些地区发展掠夺能力变得更为必要。 ,将数值模拟的环流与卫星影像融合可以改善模拟的环流,特别是在潮间带地区,那里很少有观测资料可以量化陆海界面。一旦对海洋颜色数据和模拟的环流如何耦合有了更全面的了解,便可以开发出一种合适的数据同化方法,使沿海海洋模型能够充分利用卫星影像中呈现的观测信息。表征和监测沿海条件的生物光学和SST特性(Arnone和Parsons,2004年)。卫星间校准和大气校正方面的进展已用于对沿海地区的光学特性进行定量分析。这些卫星现在可以用来确定光学特性在图像之间的变化。它们提供了一种定量方法,用于定义可能因物理强迫而导致的变化。这些海洋彩色卫星目前使用的算法是基于半解析方法,该方法使用光谱变化来解耦吸收(总量,植物to,碎屑和有色溶解有机物)和反吸收的固有光学性质(Lee等,2002)。反向散射特性与颗粒浓度(除了尺寸,形状,折射率之外)密切相关。另外,光学特性如光束衰减系数?

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号