首页> 外文会议>IEEE LEOS Annual Meeting Conference Proceedings;LEOS '09 >Loss compensation by amplification in nanoplasmonic waveguides: Possibilities and limitations
【24h】

Loss compensation by amplification in nanoplasmonic waveguides: Possibilities and limitations

机译:通过纳米等离子体波导中的放大进行损耗补偿:可能性和局限性

获取原文

摘要

Nanophotonics in general and plasmonics in particular have received much attention in recent years, fuelled by a general interest in nanotechnology but also by the rapid advances in integrated photonics over the years, primarily brought about by using silicon/air or quartz interfaces, giving a larger refractive index difference than previously employed [1]. One can show that the minimum lateral spatial field width for a planar silicon waveguide in air is ∼300 nm, with a wavelength in the medium of ∼500 nm, at a vacuum wavelength of 1550 nm. Thus, any attempts in nanophotonics integration should surpass these values, as measured in proportion to the relevant vacuum wavelength. Thus, to increase spatial integration, it is necessary to find a successor to the current silicon nanowire technology, which, as noted, has to a large extent enabled the recent progress in integration density, see e g [2]. Such successors seem to have to rely on materials with negative epsilon [3] since these offer a possibility for increasing the integration density in photonic lightwave circuits in two ways: (i) By using principles other than total internal reflection (limited as noted above by the refractive index difference), i e plasmonics and (ii) employing e g metamaterials to generate artificially very large refractive indices. Both methods will allow denser lateral packing of waveguides as well as shorter resonators and filters. For planar waveguides, the first method suffices: one can use metamaterials such as a diluted metal, e g silver nanospheres in an embedding dielectric, or use pure metals to generate a negative epsilon, which is then interfaced to a dielectric with positive epsilon of a slightly smaller magnitude to give a near surface plasmon resonance and a tightly confined plasmon mode with the desired high effective index [4]. From this, a channel waveguide can be created by confinement in the orthogonal dimension, employing the high effective index to achie-ve a highly confined field in this orthogonal dimension, as well as offering the possibility of making subwavelength resonators due to the large resulting effective index [5]. However, the tighter the confinement the greater are the problems pertaining to optical losses (determined by the imaginary part of epsilon,ε ″ ), remaining the critical issue impeding the ubiquitously usefulness of nanophotonics light wave circuits (but certainly not pertaining to all applications). Recently, the use of quantum dots (QDs) to reduce or compensate the losses has been analyzed [6]. While the gains required are certainly high, they are not out of reach [7]. The concomitant effects of the gain compensating loss process are, however, increased power dissipation and signal to noise ratio (SNR) degradation.
机译:近年来,由于对纳米技术的普遍兴趣,以及近年来集成光子技术的飞速发展,主要是通过使用硅/空气或石英界面,纳米光子学尤其是等离子体技术受到了广泛关注。折射率差比以前采用的[1]。可以看出,在真空中波长为1550 nm的情况下,平面硅波导在空气中的最小横向空间场宽为〜300 nm,波长在〜500 nm的中间范围内。因此,纳米光子集成的任何尝试都应超过与相关真空波长成比例测量的这些值。因此,为了增加空间集成度,有必要找到当前硅纳米线技术的后继者,如上所述,该技术在很大程度上已使集成度的最新发展成为可能,请参见[g]。这样的后继者似乎必须依赖具有负ε的材料[3],因为它们提供了以两种方式提高光子光波电路中集成密度的可能性:(i)通过使用除全内反射之外的原理(如上文所述,受到限制) (ii)使用例如超材料来人工产生非常大的折射率。两种方法都将允许波导的密集横向堆积以及较短的谐振器和滤波器。对于平面波导,第一种方法就足够了:一种方法可以使用超材料,例如稀释金属(例如在嵌入电介质中的银纳米球),或使用纯金属生成负ε,然后将其连接到介电层,其正ε稍较小的幅度可产生近表面等离子体激元共振,并具有所需的高有效折射率的紧密约束的等离子体激元模式[4]。由此,可以通过限制正交尺寸,使用高有效折射率来在该正交尺寸中实现高度受限的场来创建信道波导,并且由于产生的较大有效波长而提供了制造亚波长谐振器的可能性。索引[5]。但是,限制越严格,与光损耗有关的问题就越大(由ε的虚部确定),仍然是阻碍纳米光子学光波电路普遍使用的关键问题(但肯定并不适用于所有应用) 。最近,已经分析了使用量子点(QD)来减少或补偿损耗[6]。虽然所需的收益肯定很高,但也不是没有[7]。但是,增益补偿损耗过程的伴随效果是功耗增加和信噪比(SNR)下降。

著录项

  • 来源
  • 会议地点 Belek-Antalya(TR);Belek-Antalya(TR)
  • 作者

    Thylen, Lars;

  • 作者单位

    Laboratory of Photonics and Microwave Engineering Royal Institute of Technology (KTH) Electrum 229 SE 164 40 Kista Sweden;

  • 会议组织
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号