首页> 外文会议>IEEE Congress on Evolutionary Computation;CEC '09 >Local vs. global search strategies in evolutionary GRID-based conformational sampling u00026; docking
【24h】

Local vs. global search strategies in evolutionary GRID-based conformational sampling u00026; docking

机译:基于进化GRID的构象抽样中的局部搜索策略与全局搜索策略对接

获取原文

摘要

Conformational sampling, the computational prediction of the experimental geometries of small proteins (folding) or of protein-ligand complexes (docking), is often cited as one of the most challenging multimodal optimization problems. Due to the extreme ruggedness of the energy landscape as a function of geometry, sampling heuristics must rely on an appropriate trade-off between global and local searching efforts. A previously reported ldquoplanetary strategyrdquo, a generalization of the classical island model used to deploy a hybrid genetic algorithm on computer grids, has shown a good ability to quickly discover low-energy geometries of small proteins and sugars, and sometimes even pinpoint their native structures-although not reproducibly. The procedure focused on broad exploration and used a tabu strategy to avoid revisiting the neighborhood of known solutions, at the risk of ldquoburyingrdquo important minima in overhastily set tabu areas. The strategy reported here, termed ldquodivide-and-conquer planetary modelrdquo couples this global search procedure to a local search tool. Grid nodes are now shared between global and local exploration tasks. The phase space is cut into ldquocellsrdquo corresponding to a specified sampling width for each of the N degrees of freedom. Global search locates cells containing low-energy geometries. Local searches pinpoint even deeper minima within a cell. Sampling width controls the important trade-off between the number of cells and the local search effort needed to reproducibly sample each cell. The probability to submit a cell to local search depends on the energy of the most stable geometry found within. Local searches are allotted limited resources and are not expected to converge. However, as long as they manage to discover some deeper local minima, the explored cell remains eligible for further local search, now relying on the improved energy level to enhance chances to be picked again. This competition prevents the syst-nem to waste too much effort in fruitless local searches. Eventually, after a limited number of local searches, a cell will be ldquoclosedrdquo and used - first as ldquoseedrdquo, later as tabu zone-to bias future global searches. Technical details and some folding and docking results will be discussed.
机译:构象采样是小蛋白(折叠)或蛋白-配体复合物(对接)的实验几何形状的计算预测,通常被认为是最具挑战性的多峰优化问题之一。由于能源格局作为几何函数的极端坚固性,采样启发法必须依赖于全局和本地搜索工作之间的适当折衷。先前报道的“行星策略”,即用于在计算机网格上部署混合遗传算法的经典岛模型的概括,已显示出良好的能力,可以迅速发现小蛋白质和糖的低能量几何结构,有时甚至可以查明它们的天然结构-尽管不是可重复的。该程序着重于广泛的探索,并采用禁忌策略,以避免重新访问已知解决方案的邻域,从而在过度禁忌的禁忌区中存在重要的最小值的风险。此处报告的策略称为“分而治之行星模型”,将全局搜索过程与本地搜索工具结合在一起。现在,网格节点在全局和局部探索任务之间共享。对于N个自由度中的每个自由度,将相空间切成与指定的采样宽度相对应的。全局搜索可找到包含低能量几何体的单元。本地搜索可确定单元格中甚至更深的最小值。采样宽度控制着单元数量与可重复采样每个单元所需的本地搜索工作之间的重要权衡。将单元格提交到本地搜索的可能性取决于在其中找到的最稳定几何体的能量。本地搜索被分配有限的资源,并且预计不会融合。但是,只要他们设法发现一些更深的局部最小值,探索的单元格仍然有资格进行进一步的局部搜索,现在依靠提高的能量水平来提高再次被拾取的机会。这种竞争可以防止syst-nem在毫无结果的本地搜索中浪费过多的精力。最终,在有限数量的本地搜索之后,将关闭一个单元格并使用该单元格-首先用作ldquooseedrdquo,然后用作禁忌区-以偏向将来的全局搜索。将讨论技术细节以及一些折叠和对接结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号