首页> 外文会议>The Eighteenth Annual Meeting the American Society for Precision Engineering; Oct 26-31, 2003; Portland, Oregon >A Fuzzy Logic Based Adaptive Feedforward PI Controller for Nanometer Positioning
【24h】

A Fuzzy Logic Based Adaptive Feedforward PI Controller for Nanometer Positioning

机译:一种基于模糊逻辑的自适应前馈PI纳米定位控制器

获取原文
获取原文并翻译 | 示例

摘要

A technology driver in high precision manufacturing is a position measurement and control system which allows manufacturers to control the movement of their equipment at extremely high levels of precision. Performances of controllers play important roles in nanometer level positioning. A robust, disturbance resistant controller is necessary for nanometer positioning. However, the time varying and nonlinear properties of plants frequently result in the performance degradation of widely used PID controllers. The performance of feedback system can be improved considerably by combining PI feedback control with feedforward control together. Feedback controllers are very capable of compensating disturbances because feedback controllers are basically error driven. However, they often suffer from a trade-off between high performance and robust stability. With good dynamic property knowledge available, a feedforward controller may be able to prevent control errors, because feedforward controller output is based on the reference, instead of the error signal. Feedforward controllers improve the control performance by including a feedforward term to the PI output so that the controller can react to the command more quickly in order to bring the plant to the desired setpoint. A fuzzy logic controller will adjust the feedforward and PI feedback gains (K_(ffv), K_(ffa), K_(ffd), K_p and K_I) to adapt the change of dynamic behavior caused by the time varying and nonlinear properties inherent in the positioning systems. The developed control algorithm is simulated in MATLAB, and is implemented with a TMS320M67 DSP in an experimental nanolithography stage. A X-Y grating based metrology is used to measure the position of stage, which is more robust to environmental change and more suitable with high performance servomechanisms. Experiments show that stage will follow 10 nm step input with nm level steady state error, which is mainly caused by floor and acoustic vibrations.
机译:高精度制造中的技术驱动因素是位置测量和控制系统,该系统可使制造商以极高的精度控制设备的运动。控制器的性能在纳米级定位中起着重要作用。对于纳米级定位,必须有一个强大的抗干扰控制器。但是,设备的时变和非线性特性经常导致广泛使用的PID控制器的性能下降。通过将PI反馈控制与前馈控制结合在一起,可以显着提高反馈系统的性能。反馈控制器非常有能力补偿干扰,因为反馈控制器基本上是错误驱动的。但是,它们通常会在高性能和强大的稳定性之间进行权衡。凭借良好的动态特性知识,前馈控制器可能能够防止控制错误,因为前馈控制器的输出基于参考而不是误差信号。前馈控制器通过将前馈项包括在PI输出中来改善控制性能,以便控制器可以更快地对命令做出反应,以使设备达到所需的设定值。模糊逻辑控制器将调整前馈和PI反馈增益(K_(ffv),K_(ffa),K_(ffd),K_p和K_I),以适应由时变和非线性固有的非线性特性引起的动态行为的变化。定位系统。所开发的控制算法在MATLAB中进行了仿真,并在实验纳米光刻阶段用TMS320M67 DSP实现。基于X-Y光栅的度量用于测量载物台的位置,该载物台对环境变化更鲁棒,并且更适合高性能伺服机构。实验表明,载物台将跟随10 nm阶跃输入,具有nm级的稳态误差,这主要是由地板和声学振动引起的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号