首页> 外文会议>Conference on Plasmonics: Metallic Nanostructures and Their Optical Properties; Aug 3-5, 2003; San Diego, California, USA >Applications of surface plasmon and phonon polaritons to developing left-handed materials and nano-lithography
【24h】

Applications of surface plasmon and phonon polaritons to developing left-handed materials and nano-lithography

机译:表面等离激元和声子极化子在开发左手材料和纳米光刻中的应用

获取原文
获取原文并翻译 | 示例

摘要

Despite recent successes in making left-handed materials in the microwave frequency range, there has been little progress in achieving same for infrared frequencies. A novel approach to making a material with negative index of refraction using photonic crystals made of dielectric components with a small (of order minus one) negative dielectric permittivity has recently been proposed. Periodic structures with negative-epsilon dielectrics support surface waves which can have a negative group velocity. The nature of these surface waves depends on the dielectric components: they are surface plasmons for plasmonic materials (such as metals) or surface phonon polaritons for polar crystals (such as SiC, ZnSe, GaP) with the reststrahlen band. The advantages of using phononic materials (long phonon lifetime, scientifically important frequency range) will be illustrated. Depending on the photonic lattice (square or hexagonal), the resulting meta-material can be either isotropic, or strongly anisotropic. Another application of the negative-epsilon materials is nano-lithography. As was suggested earlier (Pendry 2000, Shen and Platzman 2002), any material withε = -1 can be used to significantly enhance near-field imaging. It is shown that a thin slab of SiC is capable to focus the 10.55 micron radiation of a CO_2 laser to several hundred nanometers, thus paving the way for a new nano-lithographic technique: Phonon Enhanced Near Field Lithography in Infrared (PENFIL). Analytic calculations of the fields in the focus of such slab are presented, and parametric dependence on the slab width and phonon lifetime explored.
机译:尽管最近在微波频率范围内生产左撇子材料方面取得了成功,但在红外频率上获得相同材料方面进展甚微。最近提出了一种新颖的方法,该方法使用由具有小的(数量级负一个)负介电常数的介电元件制成的光子晶体来制造具有负折射率的材料。具有负ε电介质的周期性结构支持表面波,该表面波可能具有负的群速度。这些表面波的性质取决于介电成分:它们是等离子材料(例如金属)的表面等离激元,或者是具有reststrahlen带的极性晶体(例如SiC,ZnSe,GaP)的表面声子极化子。将说明使用声子材料的优点(声子寿命长,科学上重要的频率范围)。根据光子晶格(正方形或六边形),最终的超材料可以是各向同性的,也可以是强各向异性的。负ε材料的另一种应用是纳米光刻。如前所述(Pendry 2000,Shen和Platzman 2002),任何具有ε= -1的材料都可以用来显着增强近场成像。结果表明,一块薄的SiC平板能够将CO_2激光的10.55微米辐射聚焦到数百纳米,从而为新的纳米光刻技术铺平了道路:声子红外增强近场光刻(PENFIL)。给出了这种平板焦点区域的解析计算,并探讨了与平板宽度和声子寿命有关的参数依赖性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号