【24h】

Uncooled photovoltaic Hg_(1-x)Cd_xTe LWIR detectors

机译:未冷却的光伏Hg_(1-x)Cd_xTe LWIR检测器

获取原文
获取原文并翻译 | 示例

摘要

We report an advanced Hg_(1-x)Cd_xTe photovoltaic detector based on monolithic Hg_(1-x)Cd_xTe heterostructure with 3-dimensional architecture. It consists of a narrow gap, p-type Hg_(1-x)Cd_xTe small size (≈10x10x7 μm) absorber of infrared radiation buried in a graded gap Hg_(1-x)Cd_xTe layer surrounding absorber and heterojunction contacts obtained by selective doping of the graded gap Hg_(1-x)Cd_xTe layer surrounding the absorber region. The heterostructure is passivated with a ZnS layer and coated with contact metallization to n~+ and p-type regions. The device is supplied with 50x50 μm immersion microlens formed directly in the CdZnTe substrate. These two layers also play a role of a mirror that improves quantum efficiency for weakly absorbed infrared radiation. In addition, the mirror eliminates backside incidence of thermal radiation, which prevents generation of dark current. The design of the device is optimized to achieve the best compromise between requirements of good absorption and collection efficiency, low thermal generation; and low parasitic impedance. Test devices have been prepared using the modified isothermal vapor phase epitaxy of Hg_(1-x)Cd_xTe on profiled CdZnTe substrates, negative epitaxy of Hg_(1-x)Cd_xTe to widen band gap of surface regions, selective doping, multiple chemical etching and ion milling, vacuum deposition of dielectric and metal layers. The test structures of photovoltaic detectors were optimized for wavelengths varying between 4 and 12 μm. The examples are 10.6 μm laser radiation receivers and 8-9.5 μm detectors of thermal radiation. Since the devices operate at zero bias mode, they do not exhibit low frequency noise. The measurements show the possibility to achieve detectivity of ≈1·10~9 cmHz~(1/2)/W at the 8-9 m range. Potentially, the devices can be assembled in large focal plane arrays. This will enable obtaining a NETD of less than 0.1 K for staring thermal imagers operating with F#=1 optics and a 30/sec frame rate.
机译:我们报告了先进的Hg_(1-x)Cd_xTe光电探测器,该探测器基于具有3维结构的整体式Hg_(1-x)Cd_xTe异质结构。它由一个狭窄的间隙,小尺寸(≈10x10x7μm)的p型Hg_(1-x)Cd_xTe红外吸收体,埋在围绕吸收体的渐变间隙Hg_(1-x)Cd_xTe层中以及通过选择性掺杂获得的异质结触点围绕吸收体区域的梯度间隙Hg_(1-x)Cd_xTe层的厚度。异质结构被ZnS层钝化,并被接触金属化覆盖到n〜+和p型区域。该设备配有直接在CdZnTe基板上形成的50x50μm浸入式微透镜。这两层还起到镜子的作用,该镜子可提高弱吸收红外辐射的量子效率。另外,镜子消除了热辐射的背面入射,从而防止了暗电流的产生。该设备的设计经过了优化,可以在吸收和收集效率良好,发热量低的要求之间取得最佳折衷。和低寄生阻抗。使用修正的CdZnTe基板上的Hg_(1-x)Cd_xTe等温气相外延,Hg_(1-x)Cd_xTe负负外延以扩大表面区域的带隙,选择性掺杂,多次化学刻蚀和离子铣削,真空沉积电介质和金属层。光电探测器的测试结构针对4至12μm之间的波长进行了优化。示例是10.6μm激光辐射接收器和8-9.5μm热辐射检测器。由于器件在零偏置模式下运行,因此它们不会表现出低频噪声。测量结果表明有可能在8-9 m范围内实现≈1·10〜9 cmHz〜(1/2)/ W的探测率。潜在地,这些装置可以组装成大焦平面阵列。对于以F#= 1光学元件和30 / sec帧频运行的凝视热像仪,这将使NETD小于0.1K。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号