【24h】

Laser Doping for Microelectronics and Microtechnology

机译:微电子和微技术的激光掺杂

获取原文
获取原文并翻译 | 示例

摘要

The future CMOS generations for microelectronics will require advanced doping techniques capable to realize ultra-shallow, highly-doped junctions with abrupt profiles. Recent experiments have shown the potential capabilities of laser processing of Ultra Shallow Junctions (USJ). According to the International Technology Roadmap for Semiconductors, two laser processes are able to reach ultimate predictions: laser thermal processing or annealing (LTP or LTA) and Gas Immersion Laser Doping (GILD). Both processes are based on rapid melting/solidification of the substrate. During solidification, the liquid silicon, which contains the dopants, is formed epitaxially from the underlying crystalline silicon. In the case of laser thermal annealing dopants are implanted before laser processing. GILD skips the ion-implantation step: in this case dopants are chemisorbed on the Si surface before the laser shot. The dopants are then incorporated and activated during the laser process. Activation is limited to the liquid layer and this chemisorption/laser shot cycle can be repeated until the desired concentration is reached. In this paper, we investigate the possibilities and limitations of the GILD technique for two different substrates: silicon bulk and SOI. We also show some laser doping applications for the fabrication of micro and nanoresonators, widely used in the MEMS Industry.
机译:未来的微电子CMOS时代将需要先进的掺杂技术,以实现具有陡峭轮廓的超浅,高掺杂结。最近的实验显示了超浅结(USJ)激光加工的潜在功能。根据《国际半导体技术路线图》,两种激光工艺能够达到最终的预测:激光热处理或退火(LTP或LTA)和气体浸入激光掺杂(GILD)。两种方法均基于基材的快速熔化/固化。在固化期间,从下面的晶体硅外延形成包含掺杂剂的液态硅。在激光热退火的情况下,在激光处理之前注入掺杂剂。 GILD跳过离子注入步骤:在这种情况下,在激光照射之前,掺杂剂被化学吸附在Si表面上。然后在激光过程中掺入并激活掺杂剂。活化仅限于液体层,并且该化学吸附/激光发射循环可以重复进行,直到达到所需浓度为止。在本文中,我们研究了GILD技术在两种不同衬底上的可能性和局限性:硅块和SOI。我们还展示了一些用于制造微谐振器和纳米谐振器的激光掺杂应用,这些应用广泛应用于MEMS工业。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号