首页> 外文会议>Composites at Lake Louise 2017 >USING REACTION KINETICS TO DEDUCE THE FIBER-MATRIX INTERFACE/INTERPHASE IN GLASS FIBER/EPOXY/AMINE COMPOSITES
【24h】

USING REACTION KINETICS TO DEDUCE THE FIBER-MATRIX INTERFACE/INTERPHASE IN GLASS FIBER/EPOXY/AMINE COMPOSITES

机译:使用反应动力学减少玻璃纤维/环氧树脂/胺类复合材料中的纤维-基质界面/界面

获取原文
获取原文并翻译 | 示例

摘要

The link between the fiber-matrix interface/interphase (F-MI/I) and composite design was recently reviewed (Jones 2010) and has been investigated by many others (e.g., Drzal 2001 and Palmese 1995) in an attempt to provide design guidelines for composite manufacture. Although the 2010 publication focused primarily on carbon fiber composites, it was noted that the formation of an I/I between a glass fiber and a resin poses an interesting conundrum, since there are several reports in the literature noting that an un-sized glass fiber has a strong interfacial bond to an epoxy resin. This finding contrasts the traditional glass fiber industry approach to coat the fibers with a complex sizing using an aqueous emulsion technique. The most important component of the sizing is considered to be the silane coupling agent (SCA), which has been extensively investigated (Ishida and Koenig 1996). However, the unanswered question is whether the SCA dominates the glass fiber interface or whether an interphase is formed in which the SCA is an integral component. In this presentation, the author continues this discussion by critically looking at F-M I/I formation in glass fiber/epoxy/amine composites through the lens of epoxy/amine reaction kinetics. From this perspective, three critical perturbations are identified that can control I/I formation. These perturbations are then linked to fracture morphologies observed during fiber failure at the micromechanics level. This link is considered important since data (Drzal 1991) suggests that controlling composite failure at the micromechanics level may enhance the intrinsic toughness of the composite.
机译:纤维-基质界面/相间(F-MI / I)与复合材料设计之间的联系最近得到了审查(Jones 2010),并已被许多其他研究人员(例如Drzal 2001和Palmese 1995)进行了研究,以试图提供设计指导用于复合材料制造。尽管2010年的出版物主要侧重于碳纤维复合材料,但据指出,在玻璃纤维和树脂之间形成I / I构成了一个有趣的难题,因为文献中有数篇报道指出未上浆的玻璃纤维与环氧树脂具有很强的界面结合力。这一发现与传统的玻璃纤维工业方法形成了鲜明的对比,该方法是使用水性乳液技术在纤维上涂复纤维。上浆中最重要的成分被认为是硅烷偶联剂(SCA),该硅烷偶联剂已被广泛研究(Ishida和Koenig 1996)。但是,尚未解决的问题是SCA是否在玻璃纤维界面上占主导地位,或者是否形成了SCA是不可分割的组成部分的中间相。在本演示文稿中,作者继续通过环氧/胺反应动力学的透镜仔细研究玻璃纤维/环氧/胺复合物中F-M I / I的形成,以继续进行讨论。从这个角度来看,确定了可以控制I / I形成的三个关键扰动。然后,将这些扰动与在微观力学水平下纤维断裂期间观察到的断裂形态联系在一起。这种联系被认为是重要的,因为数据(Drzal 1991)表明,在微力学水平上控制复合材料的破坏可能会增强复合材料的固有韧性。

著录项

  • 来源
    《Composites at Lake Louise 2017》|2017年|24-24|共1页
  • 会议地点 Lake Louise(CA)
  • 作者

    Gale Holmes;

  • 作者单位

    National Institute of Standards and Technology, USA;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号