【24h】

Optical Electrostriction

机译:光学电致伸缩

获取原文
获取原文并翻译 | 示例

摘要

It is well known that the forces which light imparts on micro- and nanoparticles arise due to intensity gradients and dielectric mismatch. For laser-irradiated atoms and molecules, optical forces primarily result from close resonance between the optical frequency and an electronic transition. Recently it has emerged that optically induced pair forces also arise, through a modification of Casimir-Polder interactions; preliminary assessments of the mechanism have largely centered on nanoparticle systems. In this paper, we show that a potentially very significant effect can be anticipated in the condensed phase, an optically induced modification of interatomic forces that is capable of generating anisotropic patterns of laser-induced compression and expansion. This phenomenon, termed optical electrostriction, should be measurable and significant when high intensity laser light is transmitted through even an essentially non-absorptive material. However, the full conditions for observation of the effect are such that some competing interactions might also arise. Key parameters that determine the size and character of optical electrostriction are delineated and possible applications are considered, including optical actuators for nanoscale electromechanical systems.
机译:众所周知,由于强度梯度和介电失配,会产生光施加在微米颗粒和纳米颗粒上的力。对于激光辐照的原子和分子,光学力主要是由光学频率和电子跃迁之间的紧密共振引起的。最近发现,通过改进卡西米尔-波尔德相互作用,还产生了光学诱导的配对力。该机制的初步评估主要集中在纳米粒子系统上。在本文中,我们表明在凝聚相中可以预见到潜在的非常显着的影响,即原子间作用力的光学诱导修饰,它能够产生激光诱导的压缩和膨胀的各向异性模式。当高强度激光甚至通过基本不吸收的材料传输时,这种被称为光学电致伸缩的现象应该是可测量的并且是显着的。但是,观察效果的全部条件是,可能还会出现一些相互竞争的相互作用。描述了确定光学电致伸缩的大小和特性的关键参数,并考虑了可能的应用,包括用于纳米级机电系统的光学致动器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号