首页> 外文会议>Asian International Conference on Fluid Machinery; 20051012-15; Yichang(CN) >NUMERIC SIMULATION OF ULTRA-HIGH PRESSURE ROTARY ATOMIZING WATERJET FLOW FIELD
【24h】

NUMERIC SIMULATION OF ULTRA-HIGH PRESSURE ROTARY ATOMIZING WATERJET FLOW FIELD

机译:超高压旋转雾化射流流场的数值模拟

获取原文
获取原文并翻译 | 示例

摘要

Rust dismantling process using ultra-high pressure waterjet is carried out in a close vacuum cavity. When ultra-high pressure water flows out from nozzles, there is a temperature rise of 90℃ generated. This temperature rise, combined with the powerful suction force produced by vacuum system and the atomization of waterjet brought by fast rotation of spraying rods, helps to achieve the process's goals, which are cleaning the metal surface to expose its "White Base", drying the cleaned surface just after dismantling and generating no rust in a determined period after treatment. In this paper, the numeric simulation for complicated flow field of multi-bundle ultra-high pressure striking waterjet in a restricted space is conducted with the help of Mixture model for air and fluid two-phase flow, the k-ω model for turbulence flow and the FLWEN+ software. The conclusions are: 1) the optimizing range for pressure and speed of flow field is S (the striking distance from nozzle outlet to cleaning surface) = 7 ~ 15mm; 2) the striking force and shearing force of high-speed waterjet vary with the changing of S. They reach their peak values when S = 15mm. This result is also consistent with the test results; and 3) the stability and convergence of k-ω model are the best among all applicable simulation models for turbulence flow, these lead to less computational time and higher efficiency.
机译:使用超高压水刀的除锈过程是在密闭的真空腔中进行的。当超高压水从喷嘴流出时,会产生90℃的温度上升。温度的升高,再加上真空系统产生的强大吸力,以及喷杆快速旋转带来的喷水雾化,有助于实现该过程的目标,即清洁金属表面以露出其“白底”,然后干燥金属。拆卸后立即清洁表面,并在处理后一定时间内不生锈。本文利用空气和流体两相流的混合模型,湍流的k-ω模型,对有限空间内的多束超高压打击水射流复杂流场进行了数值模拟。和FLWEN +软件。结论为:1)流场压力和流场速度的最佳范围为S(喷嘴出口到清洁表面的撞击距离)= 7〜15mm。 2)高速水刀的冲击力和剪切力随S的变化而变化。当S = 15mm时,它们达到峰值。该结果也与测试结果一致。 3)在所有适用的湍流模拟模型中,k-ω模型的稳定性和收敛性是最好的,这导致更少的计算时间和更高的效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号