【24h】

Plasticity as a Lifesaver in the Design of Cardiovascular Stents

机译:可塑性作为心血管支架设计中的救星

获取原文
获取原文并翻译 | 示例

摘要

A common treatment to restore normal blood flow in an obstructed artery is the deployment of a stent (i.e. small tube-like structure). The vast majority of stents are crimped on a folded balloon and laser cut from 316L stainless steel tubes. Although, several numerical studies (exploiting the Finite Element Method) are dedicated to the mechanical behaviour of balloon expandable stents, there seems to be no consensus regarding the mechanical properties to describe the inelastic material behaviour of SS316L. Moreover, as the typical dimensions of stent struts (e.g. 100 μm for coronary stents) are of a similar order of magnitude as the average grain size in stainless steel (i.e. 25 μm), continuum approaches relying on macroscopic material properties may be questionable. In addition, an experimental study on stainless steel stent strut specimens showed a size-dependency of the failure strain. In this study the impact of the magnitude of the yield stress on the stent expansion behavior is examined. An increase in the yield stress (from 205 N/mm~2 to 375 N/mm~2) results in an increase of the pressure (from about 0.3 N/mm~2 to approximately 0.4 N/mm~2) which the clinician needs to exert for the balloon to unfold and to reach its cylindrical expanded shape. Furthermore, the effect of the size dependency behavior of the material is studied by monitoring the nominal strain during stent expansion. The maximum value of the nominal strain in the expanded stent (e.g. ε_n = 23 %) does not exceed the critical value of the failure strain, (i.e. ε_n = 33 %), moreover the critical values are nowhere exceeded in the whole stent during the expansion. Our numerical results - accounting for the presence of the balloon in its actual folded shape -correspond very well with pressure/diameter data supplied by the manufacturer. Consequently, this study shows that the free expansion of new generation balloon-expandable stents can be studied accurately with computational analysis based on the Finite Element Method (FEM) and relying on macroscopic material properties. In this context, there is no need to implement a size-based constitutive material model, but before accepting the results of the study, one should check in any case the maximum strain against the limit as shown above.
机译:恢复阻塞动脉中正常血流的常见治疗方法是展开支架(即小管状结构)。绝大多数支架卷曲在折叠的气球上,并用316L不锈钢管激光切割。尽管有一些数值研究(利用有限元方法)致力于球囊扩张式支架的力学行为,但对于描述SS316L的非弹性材料行为的力学性能似乎尚未达成共识。此外,由于支架支柱的典型尺寸(例如,冠状支架的尺寸为100μm)与不锈钢的平均晶粒尺寸(即,25μm)具有相似的数量级,因此依赖于宏观材料特性的连续方法可能是有问题的。另外,对不锈钢支架撑杆样品的实验研究表明,破坏应变的大小与尺寸有关。在这项研究中,研究了屈服应力大小对支架扩张行为的影响。屈服应力的增加(从205 N / mm〜2增加到375 N / mm〜2)会导致临床医生的压力增加(从大约0.3 N / mm〜2到大约0.4 N / mm〜2)。需要使气球展开并达到其圆柱形扩张形状。此外,通过监测支架扩张期间的标称应变来研究材料的尺寸依赖性行为的影响。扩张支架中标称应变的最大值(例如ε_n= 23%)不超过破坏应变的临界值(即ε_n= 33%),而且在整个扩张过程中整个支架中都没有超过临界值扩张。我们的数值结果-考虑到气球实际折叠形状的存在-与制造商提供的压力/直径数据非常吻合。因此,本研究表明,基于有限元方法(FEM)并依靠宏观材料特性进行计算分析,可以准确地研究新一代球囊扩张式支架的自由扩张。在这种情况下,不需要实施基于尺寸的本构材料模型,但是在接受研究结果之前,无论如何都要检查最大应变是否超过上述极限。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号