首页> 外文会议>Annual International Conference on Research in Computational Molecular Biology(RECOMB 2005); 20050514-18; Cambridge,MA(US) >A Fundamental Decomposition Theory for Phylogenetic Networks and Incompatible Characters
【24h】

A Fundamental Decomposition Theory for Phylogenetic Networks and Incompatible Characters

机译:系统发育网络和不兼容特征的基本分解理论

获取原文
获取原文并翻译 | 示例

摘要

Phylogenetic networks are models of evolution that go beyond trees, allowing biological operations that are not consistent with tree-like evolution. One of the most important of these biological operations is recombination between two sequences (homologous chromosomes). The algorithmic problem of reconstructing a history of recombinations, or determining the minimum number of recombinations needed, has been studied in a number of papers [10,11,12,23,24,25,16,13,14,6, 9, 8,18,19,15,1]. In [9,6,10, 8,1] we introduced and used "conflict graphs" and "incompatibility graphs" to compute lower bounds on the minimum number of recombinations needed, and to efficiently solve constrained cases of the minimization problem. In those results, the non-trivial connected components of the graphs were the key features that were used. In this paper we more fully develop the structural importance of non-trivial connected components of the incompatibility graph, to establish a fundamental decomposition theorem about phylogenetic networks. The result applies to phylogenetic networks where cycles reflect biological phenomena other than recombination, such as recurrent mutation and lateral gene transfer. The proof leads to an efficient O(nm~2) time algorithm to find the underlying maximal tree structure defined by the decomposition, for any set of n sequences of length m each. An implementation of that algorithm is available. We also report on progress towards resolving the major open problem in this area.
机译:系统发育网络是超越树木的进化模型,其生物学操作与树状进化不一致。这些生物学操作中最重要的一项是两个序列(同源染色体)之间的重组。在多篇论文中[10,11,12,23,24,25,16,13,14,6,9,9,9,9,9,9,9,9,9,9,9]中,已经研究了重建重组历史或确定所需最小重组数的算法问题。 8,18,19,15,1]。在[9,6,10,8,1]中,我们引入并使用“冲突图”和“不兼容图”来计算所需的最小重组数的下限,并有效地解决最小化问题的约束情况。在这些结果中,图的重要连接部分是所使用的关键功能。在本文中,我们更加充分地开发了不相容图的非平凡连接组件的结构重要性,从而建立了有关系统发育网络的基本分解定理。该结果适用于系统发育网络,其中循环反映了除重组以外的生物学现象,例如复发突变和侧向基因转移。证明导致了一种有效的O(nm〜2)时间算法,可以针对每个长度为m的n个序列的任何集合找到由分解定义的底层最大树结构。该算法的实现是可用的。我们还报告了解决这一领域主要开放问题的进展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号