【24h】

In-situ Quantitative Analysis of Tumor Suppressor Protein (hDMP1) Using a Nanomechanical Cantilever Beam

机译:使用纳米机械悬臂梁对肿瘤抑制蛋白(hDMP1)进行原位定量分析

获取原文
获取原文并翻译 | 示例

摘要

This study is focused on testing "immuno-sensors" of micro-cantilever beams for the purpose of future design of high-throughout bioassays. We currently study the aberrant expression, deletion and mutation of hDMP1 (Human DMP1) in human lung cancer. Lung cancer is the leading cause of cancer deaths among men and women in North America. There are four major histological subtypes of human lung cancer: small-cell carcinoma (SCC), adenocarcinoma (AC), squamous cell carcinoma (SCC), and large-cell carcinoma (LCC). The hDMP1 locus is localized on chromosome 7q21, a region frequently deleted as part of the 7q-minus and monosomy 7 abnormalities of acute myeloid leukemia and myelodysplastic syndrome. Recent data demonstrate the critical role of Dmp1 in Ras-Raf-Arf signaling and cellular senescence. In order to study the interactions of hDMP1 gene product and selected tumor markers with BioMEMS devices, protein coating (Antibody) conduct on cantilevers with silicon nitride (SiNx) surfaces. Silicon nitride surface has the potential to provide a good interface for BioMEMS devices, due to enhanced adherence of substances on this surface. The cantilever biosensors coated with hDMP1 antibody were used for the detection of hDMP1 antigen, which is known to be a tumor suppressor protein. Results revealed that the changes in nano-mechanical forces provided sufficient differential torque to bend the cantilever beam upon injection of the antigen. Theoretical models have been developed for the prediction of the vibrational responses of atomic force microscope (AFM) cantilevers before and after antigen/antibody interaction. Exposure of the proteins to micro-cantilever (MC) resulted in un-reversible large stress. Static deflection of micro-cantilever appeared as a result of the surface stresses that are induced by changes upon antibody-antigen interaction. This indicated that the micro-cantilever approach is useful for detecting proteins and tumor markers, and this system is applicable as a model to design miniaturized biosensor systems. We also applied gene micro-array to identify unknown targets for hDMP1 and extend our observation of the complicated process of carcinogenesis.
机译:这项研究的重点是测试微悬臂梁的“免疫传感器”,以用于未来高通量生物测定的设计。我们目前正在研究人类肺癌中hDMP1(人类DMP1)的异常表达,缺失和突变。在北美,肺癌是导致癌症死亡的主要原因。人类肺癌有四种主要的组织学亚型:小细胞癌(SCC),腺癌(AC),鳞状细胞癌(SCC)和大细胞癌(LCC)。 hDMP1基因座位于染色体7q21上,该区域作为急性髓细胞性白血病和骨髓增生异常综合症的7q-负和7号单体性异常的一部分经常被删除。最新数据表明Dmp1在Ras-Raf-Arf信号传导和细胞衰老中的关键作用。为了研究hDMP1基因产物和选定的肿瘤标志物与BioMEMS设备的相互作用,蛋白质涂层(抗体)在具有氮化硅(SiNx)表面的悬臂上进行。由于增强了物质在该表面上的附着力,因此氮化硅表面具有为BioMEMS器件提供良好界面的潜力。使用涂有hDMP1抗体的悬臂生物传感器检测hDMP1抗原,已知该抗原是一种肿瘤抑制蛋白。结果显示,纳米机械力的变化提供了足够的差动扭矩,以在注射抗原时弯曲悬臂梁。已经开发了用于预测抗原/抗体相互作用之前和之后原子力显微镜(AFM)悬臂振动响应的理论模型。蛋白质暴露于微悬臂梁(MC)导致不可逆的大应力。微悬臂梁的静态变形是由于抗体-抗原相互作用变化引起的表面应力的结果。这表明微悬臂梁方法可用于检测蛋白质和肿瘤标志物,并且该系统可作为模型设计小型化生物传感器系统。我们还应用基因微阵列来鉴定hDMP1的未知靶标,并扩展了我们对复杂的致癌过程的观察。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号