【24h】

DEVELOPMENT OF PROCESS OPTIMIZATION FOR AN INTELLIGENT KNOWLEDGE-BASED SYSTEM FOR SPUR GEAR PRECISION FORGING DIE DESIGN

机译:基于智能知识的毛刺齿轮精密锻造模具设计过程优化的开发

获取原文
获取原文并翻译 | 示例

摘要

Forging sequence design is mainly carried out using empirical rules for the design of the intermediate die shapes, in addition to many trail-and-error runs resulting in prolonged development times and higher costs. An integrated optimal design of preform shapes and process conditions approach to minimize the energy required is essential. The research presented in this article aims at developing an optimization algorithm to determine the optimum intermediate die shape-designs that minimize the total energy required during the forging process sequence. It is based on the results obtained in the previous research with focus on knowledge base and database representation to design precision forging solid gears and provide detailed process specification. A three-step algorithm, which addresses gear construction design, manufacturability analysis of gear construction and die-design optimization, is used to generate the parametric gear model and automatically extract design information for manufacturing process planning based on the feature-based parametric design system. Utilization of the shape optimization method for preform stages avoids costly production problems. The optimized approach provides accurate description of all stages involved in the forging process. Forging load and energy required, along with metal flow and detailed geometry specification of die forms for every forging stage are obtained. The forging energy requirements based on this approach are as much as 25% lower than those arrived from die designs based on actual tooth profile geometry.
机译:锻造序列的设计主要是使用经验规则来进行中间模具形状的设计,此外还要进行许多反复试验,从而延长了开发时间并提高了成本。瓶坯形状和工艺条件方法的集成优化设计对于最大限度地减少所需的能量至关重要。本文提出的研究旨在开发一种优化算法,以确定最佳的中间模具形状设计,以将锻造过程中所需的总能量降至最低。它基于先前研究中获得的结果,重点放在知识库和数据库表示上,以设计精密锻造固体齿轮并提供详细的工艺规范。针对齿轮构造设计,齿轮构造的可制造性分析和模具设计优化的三步算法用于生成参数齿轮模型,并基于基于特征的参数设计系统自动提取设计信息以进行制造工艺计划。在瓶坯阶段使用形状优化方法避免了昂贵的生产问题。优化的方法可以准确描述锻造过程中涉及的所有阶段。获得了每个锻造阶段所需的锻造载荷和能量,以及金属流动和详细的模具规格几何规格。基于这种方法的锻造能量需求比基于实际齿廓几何形状的模具设计所得出的能量要低25%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号