【24h】

LYSINOALANINE IN FOOD AND IN ANTIMICROBIAL PROTEINS

机译:食品和抗菌蛋白中的赖氨酸丙氨酸

获取原文
获取原文并翻译 | 示例

摘要

Heat and alkali treatment of food proteins widely used in food processing results in the formation of crosslinked amino acids such as lysinoalanine, ornithinoalanine, lanthion-ine, and methyl-lanthionine and concurrent racemization of L-amino acid isomers to D-ana-logues. The mechanism of lysinoalanine formation is a two-step process: first, hydroxide ion-catalyzed elimination of cysteine and serine residues to a dehydroalanine intermediate; second, reaction of the double bond of dehydroalanine with theε-NH_2 group of lysine to form a lysinoalanine crosslink. The corresponding elimination-addition reaction of threon-ine produces methyl-dehydroalanine, which then reacts with the NH_2 and SH groups to form methyl-lysinoalanine and methyl-lanthionine, respectively. The crosslinked amino acids lanthionine and methyl-lanthionine are formed by analogous nucleophilic addition reactions of the SH group of cysteine to dehydroalanine and methyl-dehydroalanine, respectively. Processing conditions that favor these transformations include high pH, temperature and exposure time. Factors which minimize lysinoalanine formation include the presence of SH-containing amino acids such as cysteine, N-acetyl-cysteine, and glutathione, dephosphorylation of O-phosphoryl esters, and acylation of ε-NH_2 groups of lysine side chains. The presence of lysinoalanine residues along a protein chain decreases digestibility and nutritional quality in rodents but enhances nutritional quality in ruminants. Protein-bound and free lysinoalanines are reported to induce enlargement of nuclei of rat kidney cells. All of the mentioned dehydro and crosslinked amino acids also occur naturally in certain peptide and protein antibiotics. These include duramycin, cinnamycin, epidermin, sub-tilin and the widely used food preservative nisin. Mechanistic rationalizations are offered for the observed antimicrobial activities of these compounds in relation to their structures. The cited findings and new research to better define the chemistry and dietary and antimicrobial roles of lysinoalanine and related compounds should lead to better and safer foods.
机译:食品加工中广泛使用的食品蛋白质的热处理和碱处理会导致形成交联氨基酸,例如赖氨酸丙氨酸,鸟氨酸丙氨酸,羊毛硫氨酸和甲基羊毛硫氨酸,并使L-氨基酸异构体消旋成D-ana-logues。赖氨酸丙氨酸形成的机理是一个两步过程:首先,氢氧离子催化将半胱氨酸和丝氨酸残基消除为脱氢丙氨酸中间体。第二,脱氢丙氨酸的双键与赖氨酸的ε-NH_2基反应形成赖氨酸丙氨酸交联。苏氨酸的相应消除加成反应产生甲基-脱氢丙氨酸,然后与NH_2和SH基团反应形成甲基-赖氨酸丙氨酸和甲基-羊毛硫氨酸。交联的氨基酸羊毛硫氨酸和甲基羊毛硫氨酸分别通过半胱氨酸的SH基团与脱氢丙氨酸和甲基-脱氢丙氨酸的类似亲核加成反应形成。有利于这些转化的加工条件包括高pH,高温和暴露时间。最小化赖氨酸丙氨酸形成的因素包括存在含SH的氨基酸,例如半胱氨酸,N-乙酰基-半胱氨酸和谷胱甘肽,O-磷酸酯的去磷酸化和赖氨酸侧链的ε-NH_2基团的酰化。沿着蛋白质链的赖氨酸丙氨酸残基的存在会降低啮齿动物的消化率和营养品质,但会提高反刍动物的营养品质。蛋白质结合的和游离的赖氨酸丙氨酸据报道可诱导大鼠肾细胞核的扩大。所有提到的脱氢和交联氨基酸也都天然存在于某些肽和蛋白质抗生素中。这些包括杜拉霉素,肉桂霉素,表皮蛋白,枯草菌素和广泛使用的食品防腐乳链菌肽。为观察到的这些化合物与其结构有关的抗菌活性提供了机械合理性。引用的发现和新的研究可以更好地定义赖氨酸丙氨酸及其相关化合物的化学以及在饮食和抗菌方面的作用,应该会导致更好和更安全的食品。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号