首页> 外文会议>AEC/APC symposium XV >Advanced Etch-to-Depth Process Control Using Adaptive Interferometric Endpointand Endpoint/Host Parameter Exchange
【24h】

Advanced Etch-to-Depth Process Control Using Adaptive Interferometric Endpointand Endpoint/Host Parameter Exchange

机译:使用自适应干涉式端点和端点/主机参数交换的高级蚀刻到深度过程控制

获取原文
获取原文并翻译 | 示例

摘要

Accurate endpoint control solutions for fabrication of trench capacitor structures can be complicated by twornthings: etch rates which vary significantly with increasing etch depth, and etch mask thickness variations that arernpresent wafer-to-wafer and lot-to-lot. This work reports on two phases of effort, and includes relative measures ofrnsuccess of each phase, which have addressed these process control challenges. The first phase is thernimplementation of an reactive/adaptive approach to the etch-to-depth control problem that accommodates I) etchrnrate variation within a wafer run and ii) wafer to wafer mask thickness variations. The second phase includesrnfurther refinement of the adaptive control algorithm with feed-forward information related to the lateral criticalrndimension (CD) of wafer trench capacitor structures. The feed-forward CD information allows the controlrnalgorithm to more accurately "track" the changing ER earlier within the wafer process.rnThe etch target of a recess etch process is ideally the difference in height of the top of the capacitor electrodernbeing etched and the bottom of the mask, it is not the total etch depth from the start of the process. Thus, therncapability to measure and compensate the mask thickness on a run-to-run basis is the key to achieving optimalrnprocess control. The process control algorithm must also account for pre recess, or "dishing" of the capacitorrnstructures from two modes: over-etching in the blanket etch back of the poly trench fill (in recess 2, or R2), andrnCMP selectivity (in recess 3, or R3). In the course of this work, an advanced endpoint system was introduced intornthe production environment and the performance improvements evaluated.rnThe recess process of record (POR) relied upon daily characterization of chamber etch rate, with the ER resultrnthen used to adjust chamber etch times so as to hit the etch target. Etch time adjustments were made to compensaternvariations in incoming CD and mask thickness and were unique to each chamber. In line metrology used forrncompensation included mask thickness measurement by Optiprobe and atomic force microscopy for recess depthrndeterminations. A summary of typical variation of the POR is shown normalized about the mean value in Figure 1.rnThe production variation of the etch depth around the normalized target depth for the POR is 0.08 (1σ).rnAn advanced feature endpoint system was implemented to provide closed loop control of the recess process.rnThis endpoint system (Applied Materials EyeD-IEP) performed in-situ mask thickness measurements prior to the recess etch, and then during the recess etch, the endpoint algorithm adapted to changing etch rate with depth tornarrive at the depth under mask measurement and the endpoint determination. The results across a number ofrnproduction lots for the variation in etch depth is 0.044 (1σ). The results are presented in Figure 2.rnThe second phase of the work added run-to-run process control to the endpoint approach: lateral CD valuesrnwere downloaded from the fab host to the endpoint system. This parameter exchange capability is bidirectional, sornthe host could both send and receive parametric information to the endpoint system on a run-to-run basis. In thisrnwork, the CD values were used to compensate the endpoint algorithm, providing a measure of correction for thernetch rate dependency on CD. The results across a sampling of production lots for the variation in etch depth isrn0.038 (1σ). These results are presented in Figure 3.rnDetails regarding the results and approaches will be presented in the full paper.
机译:制造沟槽电容器结构的精确端点控制解决方案可能会因以下两种情况而变得复杂:蚀刻速率随蚀刻深度的增加而显着变化,而蚀刻掩模的厚度变化则代表了晶圆间和批次间的差异。这项工作报告了两个阶段的工作,包括每个阶段成功的相对度量,这些度量解决了这些过程控制挑战。第一阶段是对蚀刻至深度控制问题的反应性/自适应方法的实现,该方法适应以下问题:I)晶片行程内的蚀刻速率变化,以及ii)晶片至晶片掩模厚度的变化。第二阶段包括利用与晶片沟槽电容器结构的横向临界尺寸(CD)有关的前馈信息进一步改进自适应控制算法。前馈CD信息使控制算法可以更准确地在晶圆工艺中更早地“跟踪”变化的ER。理想情况下,凹槽蚀刻工艺的蚀刻目标是被蚀刻的电容器电极顶部与底部的高度之差。掩模,而不是从工艺开始时的总蚀刻深度。因此,逐次测量和补偿掩模厚度的能力是实现最佳工艺控制的关键。工艺控制算法还必须考虑两种模式下电容器的预凹陷或“凹陷”:两种方式:在多晶硅沟槽填充的毯式回蚀刻中进行过蚀刻(在凹陷2或R2中)和CMP选择性(在凹陷3中) ,或R3)。在这项工作的过程中,将先进的端点系统引入了生产环境并评估了性能改进。记录的凹进过程(POR)依赖于腔室刻蚀速率的每日特性,然后使用ER结果来调整腔室刻蚀时间,因此以达到蚀刻目标。蚀刻时间调整是为了补偿进入的CD和掩模厚度的变化,并且对于每个腔室都是唯一的。在线补偿中使用的光学计量包括通过Optiprobe进行的掩模厚度测量和原子力显微镜对凹陷深度的确定。 POR典型变化的摘要在图1中以平均值进行了归一化处理.rn POR的归一化目标深度附近的蚀刻深度的生产变化为0.08(1σ).rn实现了先进的特征端点系统以提供封闭的该端点系统(Applied Materials EyeD-IEP)在凹进蚀刻之前进行原位掩模厚度测量,然后在凹进蚀刻期间进行测量,该端点算法适用于随着深度的增加而改变蚀刻速率。掩模测量下的深度和终点确定。蚀刻深度变化的大量生产批次的结果为0.044(1σ)。结果显示在图2中。工作的第二阶段在端点方法中添加了运行到运行过程控制:横向cd值从fab主机下载到端点系统。这种参数交换功能是双向的,因此主机可以在运行过程中向端点系统发送和接收参数信息。在本文中,CD值用于补偿端点算法,从而提供了对CD的蚀刻速率依赖性的校正措施。整个生产批次采样的结果是蚀刻深度的变化为0.038(1σ)。这些结果显示在图3中。有关结果和方法的详细信息将在全文中显示。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号