首页> 外文会议>Advanced photon counting techniques V >New photon-counting detectors for single-molecule fluorescence spectroscopy and imaging
【24h】

New photon-counting detectors for single-molecule fluorescence spectroscopy and imaging

机译:用于单分子荧光光谱和成像的新型光子计数检测器

获取原文
获取原文并翻译 | 示例

摘要

Solution-based single-molecule fluorescence spectroscopy is a powerful new experimental approach with applications in all fields of natural sciences. Two typical geometries can be used for these experiments: point-like and widefield excitation and detection. In point-like geometries, the basic concept is to excite and collect light from a very small volume (typically femtoliter) and work in a concentration regime resulting in rare burst-like events corresponding to the transit of a single-molecule. Those events are accumulated over time to achieve proper statistical accuracy. Therefore the advantage of extreme sensitivity is somewhat counterbalanced by a very long acquisition time. One way to speed up data acquisition is parallelization. Here we will discuss a general approach to address this issue, using a multispot excitation and detection geometry that can accommodate different types of novel highly-parallel detector arrays. We will illustrate the potential of this approach with fluorescence correlation spectroscopy (FCS) and single-molecule fluorescence measurements. In widefield geometries, the same issues of background reduction and single-molecule concentration apply, but the duration of the experiment is fixed by the time scale of the process studied and the survival time of the fluorescent probe. Temporal resolution on the other hand, is limited by signal-to-noise and/or detector resolution, which calls for new detector concepts. We will briefly present our recent results in this domain.
机译:基于溶液的单分子荧光光谱法是一种功能强大的新实验方法,在自然科学的所有领域都有应用。这些实验可以使用两种典型的几何形状:点状和宽场激发和检测。在点状几何结构中,基本概念是从非常小的体积(通常为飞升)中激发并收集光,并在集中状态下工作,从而导致罕见的类似于单分子通过的突发事件。这些事件会随着时间累积以达到适当的统计准确性。因此,非常长的采集时间在某种程度上抵消了极高灵敏度的优势。加快数据采集速度的一种方法是并行化。在这里,我们将讨论使用多点激发和检测几何结构来解决此问题的通用方法,该结构可以容纳不同类型的新型高度平行的检测器阵列。我们将通过荧光相关光谱(FCS)和单分子荧光测量说明这种方法的潜力。在宽场几何中,同样的背景减少和单分子浓度问题同样适用,但是实验的持续时间由所研究过程的时间尺度和荧光探针的存活时间决定。另一方面,时间分辨率受到信噪比和/或检测器分辨率的限制,这需要新的检测器概念。我们将简要介绍该领域的最新成果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号