首页> 外文会议>The 9th World Multi-Conference on Systemics, Cybernetics and Informatics(WMSCI 2005) vol.9 >Hot-Carrier Reliability in Low-Temperature N- and P-Channel Poly-Si TFTs for Active-Matrix Liquid-Crystal Displays (AM-LCDS)
【24h】

Hot-Carrier Reliability in Low-Temperature N- and P-Channel Poly-Si TFTs for Active-Matrix Liquid-Crystal Displays (AM-LCDS)

机译:用于有源矩阵液晶显示器(AM-LCDS)的低温N和P沟道多晶硅TFT的热载流子可靠性

获取原文
获取原文并翻译 | 示例

摘要

Hot-carrier reliability in n- and p-channel poly-Si TFTs is investigated on the basis of the distribution of electric field and carrier concentration obtained from tow-dimensional device simulation, and experimentally measured gate and substrate current and threshold voltage shift after systematic applied stress. In n-channel TFTs, under strong current saturation stress, degradation is ascribable to acceptor-type interface state generation at the gate oxide/poly-Si front interface and in the grain boundaries near the poly-Si/glass back interface near n-LDD drain. While under weak saturation stress the degradation in shorter stress time is due to electron trapping at gate oxide/poly Si front interface, and, in longer stress time, increases with stress time, which is presumably due to acceptor-type interface state generation at gate oxide/poly-Si front interface throughout almost the whole channel region. In p-channel TFTs, under strong saturation stress, the degradation is dominantly due to trapping of electrons injected into gate oxide at the front interface near drain junction, giving rise to short-channel effect. The degradation saturates with the increase of stress time. Whereas, under weak saturation stress, the degradation is ascribable dominantly due to hole trapping injected into gate oxide at the front interface throughout almost the whole channel region. The degradation increases with stress time for deeper stress gate voltage, which is presumably due to donor-type interface state generation at the gate oxide/poly Si front interface.
机译:根据从二维器件仿真获得的电场分布和载流子浓度,并通过实验测量了栅极和衬底电流以及阈值电压在系统化之后的位移,研究了n沟道和p沟道多晶硅TFT中的热载流子可靠性。施加压力。在n沟道TFT中,在强大的电流饱和应力下,退化归因于在栅氧化物/多晶硅前表面和在靠近n-LDD的多晶硅/玻璃后表面附近的晶界中的受主型界面态的产生。排水。尽管在弱饱和应力下,应力时间的缩短是由于栅极氧化物/多晶硅前界面处的电子俘获所致;而在应力时间较长时,应力时间则随应力时间的增加而增加,这可能是由于在栅极处产生了受主型界面态氧化物/多晶硅前端面几乎遍布整个沟道区域。在p沟道TFT中,在强烈的饱和应力下,退化主要是由于在漏极结附近的前界面处注入到栅氧化物中的电子被俘获,从而引起了短沟道效应。降解随着应力时间的增加而饱和。然而,在弱饱和应力下,由于几乎在整个沟道区域中,在前界面处注入到栅氧化物中的空穴陷阱,导致了降解的主要原因。对于更深的应力栅极电压,劣化随着应力时间的增加而增加,这大概是由于在栅极氧化物/多晶硅正面界面处产生施主型界面态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号