【24h】

EFFECT OF ACOUSTIC OSCILLATIONS ON FLAME DYNAMICS IN SWIRL BURNERS

机译:声振动对旋流燃烧器火焰动力学的影响

获取原文
获取原文并翻译 | 示例

摘要

The likelihood of self-sustained oscillations in modern combustion systems has increased since lean premixed or partially premixed combustion conditions are currently being employed as a way to reduce NO_x emissions and gain higher efficiencies. These undesirable large pressure variations, commonly found over a wide range of operating conditions, arise due to coupling between the periodic heat release and the natural acoustic modes of some geometric elements of the system. This paper presents an experimental study of a 100 kW scale model of a 2MW swirl burner/furnace system. Analysis of the interaction between pressure and velocity fields throughout the system is aided by a detailed study of phase locked laser anemometry and pressure measurements in both cold and reactive components of the system, i.e. inlet geometry and burner/furnace. The feedback mechanism, heat release-pressure wave coupling, is explained by the fluctuation of fuel/air flow rates. Two main instabilities are encountered. One type adapts to some of the natural acoustic modes of the supply inlet geometry and has a significant effect on the inlet flow, inducing reverse flow for approximately one sixth of the cycle. The oscillation driving mechanism is related to the fluctuation in reactants supply to the flame holder. Flame destabilization phenomena such as disappearance of the central reverse flow zone are a consequence of the oscillation and do not play a major role in driving the instability. The second instability encountered presents smaller oscillation amplitudes and a higher frequency matching the longitudinal acoustic mode of the furnace. The fluctuations in inlet flow rates, for this second case, are significantly smaller but still provide the necessary variation in mixture rate to generate a concentrated heat release at a certain time of the limit cycle.
机译:由于当前采用稀薄预混或部分预混燃烧条件作为减少NO_x排放并获得更高效率的方法,现代燃烧系统中自持振荡的可能性有所增加。这些不希望的大压力变化,通常在很宽的工作条件范围内发现,是由于周期性放热与系统某些几何元素的自然声模之间的耦合而产生的。本文介绍了2MW旋流燃烧器/熔炉系统的100 kW比例模型的实验研究。整个系统中压力场和速度场之间相互作用的分析,是通过对锁相激光风速测定法和系统冷态和反应性组件(即入口的几何形状和燃烧器/熔炉)中的压力测量进行详细研究而得到帮助的。反馈机制,放热-压力波耦合,通过燃料/空气流速的波动来解释。遇到两个主要的不稳定性。一种类型适合于进气口几何形状的某些自然声学模式,并且对进气流量有显着影响,在大约六分之一的周期内会产生反向流量。振动驱动机构与向火焰保持器供应的反应物的波动有关。火焰不稳定现象(例如中央回流区域的消失)是振荡的结果,并且在驱动不稳定方面没有发挥主要作用。遇到的第二种不稳定性表现出较小的振荡幅度和较高的频率,与炉子的纵向声模相匹配。对于第二种情况,入口流速的波动要小得多,但仍会提供必要的混合速率变化,以在极限循环的某个时间产生集中的热量释放。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号