首页> 外文会议>4th international conference on microanoscale heat and mass transfer 2013 : Microanofluidics and Lab-on-a-chip ... >FLOODED TWO-PHASE FLOW DYNAMICS AND HEAT TRANSFER WITH ENGINEERED WETTABILITY ON MICROSTRUCTURED SURFACES
【24h】

FLOODED TWO-PHASE FLOW DYNAMICS AND HEAT TRANSFER WITH ENGINEERED WETTABILITY ON MICROSTRUCTURED SURFACES

机译:微观结构表面上的两相流动力学和工程可湿性传热

获取原文
获取原文并翻译 | 示例

摘要

Flooding caused by excessive droplet feeding on heat dissipation area periodically occurs for droplet-based thermal management, including spray cooling and electro-wetting. The conventional highly wettable texture of surfaces, which is designed for thin film evaporation, has negligible effect on improving thermal performance during flooding. This work examines a combination of micro-pillar structures and engineered wettability that aims to improve the liquid-vapor phase change intensity and heat dissipation rate during flooding. Numerical simulation has been made to investigate the thermal and dynamic impact of the proposed combination structure on boiling and evaporation, with control variables of pillar height and pillar array density. A transient 3-D volume-of-fluid (VOF) model has been developed to analyze behaviors of bubble growth, coalescence, and departure processes. Parameters including volumetric liquid-vapor mass transfer rate, heat source temperature and heat transfer coefficient are examined. The results indicated the structured surface can reduce bubble sizes and enhance bubble departure rates. The optimized value of pillar height exists. The pillar height has more impact on cooling enhancement than pillar array density when the increased solid-liquid interface area was kept the same.
机译:对于基于液滴的热管理(包括喷雾冷却和电润湿),会定期发生因在散热区域上过多的液滴进料而引起的溢流。设计用于薄膜蒸发的常规表面的高度可湿性质地,对改善注水期间的热性能的影响可忽略不计。这项工作研究了微柱结构和工程润湿性的结合,旨在提高注水过程中的液体-蒸汽相变强度和散热率。进行了数值模拟,以研究所提出的组合结构对沸腾和蒸发的热和动态影响,并控制了立柱高度和立柱阵列密度。已经开发了瞬态3-D流体体积(VOF)模型来分析气泡生长,聚结和离开过程的行为。检查了包括液体-蒸汽的体积传质速率,热源温度和传热系数在内的参数。结果表明,结构化表面可以减小气泡尺寸并提高气泡离开率。存在柱高的优化值。当增加的固液界面面积保持不变时,柱高对冷却增强的影响大于柱阵列密度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号