首页> 外文会议>4th IIR International Conference on Thermophysical Properties and Transfer Processes of Refrigerants >EXPERIMENTAL STUDY ON COOLING CHARACTERISTICS OF A MAGNETOCALORIC DEVICE WITH TWO DIFFERENT TYPES OF MAGNETIC REFRIGERANTS
【24h】

EXPERIMENTAL STUDY ON COOLING CHARACTERISTICS OF A MAGNETOCALORIC DEVICE WITH TWO DIFFERENT TYPES OF MAGNETIC REFRIGERANTS

机译:两种不同类型的磁性制冷剂的磁热装置的冷却特性的实验研究

获取原文
获取原文并翻译 | 示例

摘要

Magnetic refrigeration is a cooling technology based on a magnetocaloric effect, which is a temperature-changing phenomenon caused by the entropy change of magnetic refrigerants exposed under magnetic field alterations. Recently, it is commenced to apply for a room temperature region, as the magnetocaloric device does not use any F-gases that greatly influence global warming. In this paper, we have developed a renewed rotational type of magnetocaloric device with a simple component formation as well as an uncomplicated control system. The system is composed of a permanent magnet circuit which has 0.96 Tesla of its magnetic flux density at the gap center, a rotational disk which has circumferentially aligned 12 cells for magnetic refrigerant particle packed beds, and its casing that guides and controls the fluid flow through each packed bed cell, a circulating pump, and a rotation control unit. Both gadolinium and gadolinium alloy particles are applied as the magnetocaloric refrigerants and distilled water as the heat transfer fluid. An experimental study has been conducted to obtain cooling characteristics of the magnetocaloric device operation using three types of magnetic refrigerants such as gadolinium, gadolinium-dysprosium-alloy, and their hybrid type. The following operating parameters: the flow rate of heat transfer fluid, the rotational frequency and the temperature of inlet and outlet of heat transfer fluid are examined. As a result, the relationship between the rotation frequency and the flow rate to obtain the maximum temperature span between the inlet and outlet of the magnetocaloric device has been indicated. In addition, both the flow volume and flow rate of heat transfer fluid greatly affect the heat transfer between the fluid and the types of magnetic refrigerant particle packed bed through the rotation of the disk. Also difference of the magnetic refrigerant type and the inlet temperature affects the maximum temperature span between the inlet and the outlet temperatures and the coefficient of performance (COP) of the system.
机译:磁致冷是一种基于磁热效应的冷却技术,磁致热效应是一种由于磁场变化而暴露的磁性制冷剂的熵变引起的温度变化现象。最近,由于磁热装置不使用任何会严重影响全球变暖的F气体,因此开始在室温区域使用。在本文中,我们开发了一种新型的旋转式磁热装置,具有简单的组件结构以及不复杂的控制系统。该系统由一个永磁体电路组成,该永磁体电路在间隙中心的磁通密度为0.96特斯拉;一个旋转磁盘,其圆周排列12个单元,用于磁性制冷剂颗粒填充床;以及引导和控制流体流经的外壳每个填充床单元,一个循环泵和一个旋转控制单元。 applied和g合金颗粒均用作磁热制冷剂,而蒸馏水用作传热流体。已经进行了实验研究,以使用三种类型的磁性制冷剂(例如g 、, ---合金及其混合类型)获得磁热装置运行的冷却特性。检查以下工作参数:传热流体的流量,传热流体的旋转频率和入口和出口的温度。结果,表明了旋转频率与流量之间的关系,以获得磁热装置的入口和出口之间的最大温度跨度。另外,传热流体的流量和流速都通过盘的旋转极大地影响流体与磁性制冷剂颗粒填充床类型之间的传热。磁性制冷剂类型和入口温度的差异还会影响入口和出口温度之间的最大温度跨度以及系统的性能系数(COP)。

著录项

  • 来源
  • 会议地点 Delft(NL)
  • 作者单位

    Hokkaido Research Organization, Industrial Research Institute Sapporo, N19 W11 Kita-ku, Japan, shigeki-hirano@hro.or.jp;

    Kobe University, Department of Mechanical Engineering Kobe, 1-1 Rokkodai-cho Nada-ku, Japan, kawanami@mech.kobe-u.ac.jp;

    Zao Seiki Corporation Yokohama, 1-31-3 Shimo-Sueyoshi Tsurumi-ku, Japan, itogiken@zaouseiki.com;

    Hirosaki University, Department of Intelligent Machines and System Engineering Hirosaki, 3 Bunkyo-cho, Japan, kfumoto@cc.hirosaki-u.ac.jp;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号